|试卷下载
搜索
    上传资料 赚现金
    北京四中学2022年中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    北京四中学2022年中考数学全真模拟试题含解析01
    北京四中学2022年中考数学全真模拟试题含解析02
    北京四中学2022年中考数学全真模拟试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京四中学2022年中考数学全真模拟试题含解析

    展开
    这是一份北京四中学2022年中考数学全真模拟试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列图形中一定是相似形的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列命题是假命题的是(  )
    A.有一个外角是120°的等腰三角形是等边三角形
    B.等边三角形有3条对称轴
    C.有两边和一角对应相等的两个三角形全等
    D.有一边对应相等的两个等边三角形全等
    2.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为(  )
    A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人
    3.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为(  )
    A.172×102 B.17.2×103 C.1.72×104 D.0.172×105
    4.若关于 x 的一元一次不等式组 无解,则 a 的取值范围是( )
    A.a≥3 B.a>3 C.a≤3 D.a<3
    5.下列4个点,不在反比例函数图象上的是( )
    A.( 2,-3) B.(-3,2) C.(3,-2) D.( 3,2)
    6.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为(  )

    A.105° B.110° C.115° D.120°
    7.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是(  )

    A.0个 B.1个或2个
    C.0个、1个或2个 D.只有1个
    8.下列计算正确的是  
    A. B. C. D.
    9.下列手机手势解锁图案中,是轴对称图形的是( )
    A. B. C. D.
    10.下列图形中一定是相似形的是( )
    A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形
    11.义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为甲=89分,乙=89分,S甲2=195,S乙2=1.那么成绩较为整齐的是(  )
    A.甲班 B.乙班 C.两班一样 D.无法确定
    12.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为(  )
    A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC= .

    14.不等式组的整数解是_____.
    15.矩形ABCD中,AB=8,AD=6,E为BC边上一点,将△ABE沿着AE翻折,点B落在点F处,当△EFC为直角三角形时BE=_____.
    16.若一个多边形的内角和为1080°,则这个多边形的边数为__________.
    17. 一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°==1.类似地,可以求得sin15°的值是_______.
    18.若正六边形的内切圆半径为2,则其外接圆半径为__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,
    (1)求证:△ACE≌△BCD;
    (2)若DE=13,BD=12,求线段AB的长.

    20.(6分)如图,已知∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE与BD相交于点O.求证:EC=ED.

    21.(6分)解方程组:.
    22.(8分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
    收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
    排球
    10
    9.5
    9.5
    10
    8
    9
    9.5
    9

    7
    10
    4
    5.5
    10
    9.5
    9.5
    10
    篮球
    9.5
    9
    8.5
    8.5
    10
    9.5
    10
    8

    6
    9.5
    10
    9.5
    9
    8.5
    9.5
    6
    整理、描述数据:按如下分数段整理、描述这两组样本数据:
    (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
    分析数据:两组样本数据的平均数、中位数、众数如下表所示:
    项目
    平均数
    中位数
    众数
    排球
    8.75
    9.5
    10
    篮球
    8.81
    9.25
    9.5
    得出结论:
    (1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
    (2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
    你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
    23.(8分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:
    (1)初三•二班跑得最快的是第   接力棒的运动员;
    (2)发令后经过多长时间两班运动员第一次并列?

    24.(10分)先化简,再求值:,其中.
    25.(10分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
    (1)求直线y=kx的解析式和线段OA的长度;
    (2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
    (3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?

    26.(12分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.

    小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:
    (1)通过取点、画图、测量,得到了x与y的几组值,如表:
    x/cm
    0
    1
    2
    3
    4
    5
    y/cm
    6.0
    4.8
    4.5

    6.0
    7.4
    (说明:补全表格时相关数值保留一位小数)
    (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
    (3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.
    27.(12分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
    B. 等边三角形有3条对称轴,故B选项正确;
    C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
    D.利用SSS.可以判定三角形全等.故D选项正确;
    故选C.
    2、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    用科学记数法表示16000,应记作1.6×104,
    故选A.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将17200用科学记数法表示为1.72×1.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、A
    【解析】
    先求出各不等式的解集,再与已知解集相比较求出 a 的取值范围.
    【详解】
    由 x﹣a>0 得,x>a;由 1x﹣1<2(x+1)得,x<1,
    ∵此不等式组的解集是空集,
    ∴a≥1.
    故选:A.
    【点睛】
    考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    5、D
    【解析】
    分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上.
    解答:解:原式可化为:xy=-6,
    A、2×(-3)=-6,符合条件;
    B、(-3)×2=-6,符合条件;
    C、3×(-2)=-6,符合条件;
    D、3×2=6,不符合条件.
    故选D.
    6、C
    【解析】
    如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.
    【详解】
    如图,对图形进行点标注.

    ∵直线a∥b,
    ∴∠AMO=∠2;
    ∵∠ANM=∠1,而∠1=55°,
    ∴∠ANM=55°,
    ∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,
    故选C.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.
    7、C
    【解析】
    根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
    【详解】
    ∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
    ∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
    当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
    当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
    故选C.
    【点睛】
    考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
    8、C
    【解析】
    根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.
    【详解】
    、与不是同类项,不能合并,此选项错误;
    、,此选项错误;
    、,此选项正确;
    、,此选项错误.
    故选:.
    【点睛】
    此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.
    9、D
    【解析】
    根据轴对称图形与中心对称图形的定义进行判断.
    【详解】
    A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
    【点睛】
    本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.
    10、B
    【解析】
    如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.
    【详解】
    解:∵等边三角形的对应角相等,对应边的比相等,
    ∴两个等边三角形一定是相似形,
    又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,
    ∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,
    故选:B.
    【点睛】
    本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.
    11、B
    【解析】
    根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论.
    【详解】
    ∵S甲2>S乙2,
    ∴成绩较为稳定的是乙班。
    故选:B.
    【点睛】
    本题考查了方差,解题的关键是掌握方差的概念进行解答.
    12、A
    【解析】
    根据科学记数法的表示方法解答.
    【详解】
    解:把这个数用科学记数法表示为.
    故选:.
    【点睛】
    此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.
    考点:三角形相似的应用.
    14、﹣1、0、1
    【解析】
    求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.
    【详解】

    解不等式得:,
    解不等式得:,
    不等式组的解集为,
    不等式组的整数解为-1,0,1.
    故答案为:-1,0,1.
    【点睛】
    本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.
    15、3或1
    【解析】
    分当点F落在矩形内部时和当点F落在AD边上时两种情况求BE得长即可.
    【详解】
    当△CEF为直角三角形时,有两种情况:

    当点F落在矩形内部时,如图1所示.
    连结AC,
    在Rt△ABC中,AB=1,BC=8,
    ∴AC= =10,
    ∵∠B沿AE折叠,使点B落在点F处,
    ∴∠AFE=∠B=90°,
    当△CEF为直角三角形时,只能得到∠EFC=90°,
    ∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,
    ∴EB=EF,AB=AF=1,
    ∴CF=10﹣1=4,
    设BE=x,则EF=x,CE=8﹣x,
    在Rt△CEF中,
    ∵EF2+CF2=CE2,
    ∴x2+42=(8﹣x)2,
    解得x=3,
    ∴BE=3;
    ②当点F落在AD边上时,如图2所示.

    此时ABEF为正方形,
    ∴BE=AB=1.
    综上所述,BE的长为3或1.
    故答案为3或1.
    【点睛】
    本题考查了矩形的性质、图形的折叠变换、勾股定理的应用等知识点,解题时要注意分情况讨论.
    16、1
    【解析】
    根据多边形内角和定理:(n﹣2)•110 (n≥3)可得方程110(x﹣2)=1010,再解方程即可.
    【详解】
    解:设多边形边数有x条,由题意得:
    110(x﹣2)=1010,
    解得:x=1,
    故答案为:1.
    【点睛】
    此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•110 (n≥3).
    17、.
    【解析】
    试题分析:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°==.故答案为.
    考点:特殊角的三角函数值;新定义.
    18、
    【解析】
    根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.
    【详解】

    解:如图,连接、,作于;
    则,
    ∵六边形正六边形,
    ∴是等边三角形,
    ∴,
    ∴,
    ∴正六边形的内切圆半径为2,则其外接圆半径为.
    故答案为.
    【点睛】
    本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(3)证明见解析; (3)AB=3.
    【解析】
    (3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;
    (3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.
    【详解】
    证明:(3)如图,

    ∵△ACB与△ECD都是等腰直角三角形,
    ∴AC=BC,CE=CD,
    ∵∠ACB=∠ECD=90°,
    ∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,
    ∴∠BCD=∠ACE,在△BCD和△ACE中,
    ∵BC=AC,∠BCD=∠ACE,CD=CE,
    ∴△BCD≌△ACE(SAS);
    (3)由(3)知△BCD≌△ACE,
    则∠DBC=∠EAC,AE=BD=33,
    ∵∠CAD+∠DBC=90°,
    ∴∠EAC+∠CAD=90°,即∠EAD=90°,
    ∵AE=33,ED=33,
    ∴AD==5,
    ∴AB=AD+BD=33+5=3.
    【点睛】
    本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.

    考点:3.全等三角形的判定与性质;3.等腰直角三角形.
    20、见解析
    【解析】
    由∠1=∠2,可得∠BED=∠AEC,根据利用ASA可判定△BED≌△AEC,然后根据全等三角形的性质即可得证.
    【详解】
    解:∵∠1=∠2,
    ∴∠1+∠AED=∠2+∠AED,
    即∠BED=∠AEC,
    在△BED和△AEC中,

    ∴△BED≌△AEC(ASA),
    ∴ED=EC.
    【点睛】
    本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
    21、;;.
    【解析】
    分析:
    把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.
    详解:
    由方程可得,,;
    则原方程组转化为(Ⅰ)或 (Ⅱ),
    解方程组(Ⅰ)得,
    解方程组(Ⅱ)得 ,
    ∴原方程组的解是 .
    点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.
    22、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
    【解析】
    根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
    根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
    【详解】
    解:补全表格成绩:
    人数
    项目




    10
    排球
    1
    1
    2
    7
    5
    篮球
    0
    2
    1
    10
    3
    达到优秀的人数约为(人);
    故答案为130;
    同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
    故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
    【点睛】
    本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
    23、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列.
    【解析】
    (1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可.
    【详解】
    (1)从函数图象上可看出初三•二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)设在图象相交的部分,设一班的直线为y1=kx+b,把点(28,200),(40,300)代入得:

    解得:k=,b=﹣,
    即y1=x﹣,
    二班的为y2=k′x+b′,把点(25,200),(41,300),代入得:

    解得:k′=,b′=,
    即y2=x+
    联立方程组,
    解得:,
    所以发令后第37秒两班运动员在275米处第一次并列.
    【点睛】
    本题考查了利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.要掌握利用函数解析式联立成方程组求交点坐标的方法.
    24、,
    【解析】
    先根据完全平方公式进行约分化简,再代入求值即可.
    【详解】
    原式=-==,将a=+1代入得,原式===,故答案为.
    【点睛】
    本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.
    25、(1)y=2x,OA=,
    (2)是一个定值,,
    (3)当时,E点只有1个,当时,E点有2个。
    【解析】(1)把点A(3,6)代入y=kx 得;
    ∵6=3k,
    ∴k=2,
    ∴y=2x.
    OA=.
    (2)是一个定值,理由如下:
    如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.

    ①当QH与QM重合时,显然QG与QN重合,
    此时;
    ②当QH与QM不重合时,
    ∵QN⊥QM,QG⊥QH
    不妨设点H,G分别在x、y轴的正半轴上,
    ∴∠MQH=∠GQN,
    又∵∠QHM=∠QGN=90°
    ∴△QHM∽△QGN…(5分),
    ∴,
    当点P、Q在抛物线和直线上不同位置时,同理可得.①①
    如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R

    ∵∠AOD=∠BAE,
    ∴AF=OF,
    ∴OC=AC=OA=
    ∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
    ∴△AOR∽△FOC,
    ∴,
    ∴OF=,
    ∴点F(,0),
    设点B(x,),
    过点B作BK⊥AR于点K,则△AKB∽△ARF,
    ∴,
    即,
    解得x1=6,x2=3(舍去),
    ∴点B(6,2),
    ∴BK=6﹣3=3,AK=6﹣2=4,
    ∴AB=5
    (求AB也可采用下面的方法)
    设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得
    k=,b=10,
    ∴,
    ∴,
    ∴(舍去),,
    ∴B(6,2),
    ∴AB=5
    在△ABE与△OED中
    ∵∠BAE=∠BED,
    ∴∠ABE+∠AEB=∠DEO+∠AEB,
    ∴∠ABE=∠DEO,
    ∵∠BAE=∠EOD,
    ∴△ABE∽△OED.
    设OE=x,则AE=﹣x (),
    由△ABE∽△OED得,

    ∴()
    ∴顶点为(,)
    如答图3,

    当时,OE=x=,此时E点有1个;
    当时,任取一个m的值都对应着两个x值,此时E点有2个.
    ∴当时,E点只有1个
    当时,E点有2个
    26、(1)2.1;(2)见解析;(3)x=2时,函数有最小值y=4.2
    【解析】
    (1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;
    (2)可在网格图中直接画出函数图象;
    (3)由函数图象可知函数的最小值.
    【详解】
    (1)当点P运动到点H时,AH=3,作HN⊥AB于点N.
    ∵在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.

    故答案为:2.1;
    (2)

    (3)根据函数图象可知,当x=2时,函数有最小值y=4.2.
    故答案为:4.2.
    【点睛】
    本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    27、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
    【解析】
    (1)求出点A的坐标,利用待定系数法即可解决问题;
    (2)构造二次函数,利用二次函数的性质即可解决问题.
    【详解】
    解:(1)∵直线y=2x+6经过点A(1,m),
    ∴m=2×1+6=8,
    ∴A(1,8),
    ∵反比例函数经过点A(1,8),
    ∴8=,
    ∴k=8,
    ∴反比例函数的解析式为y=.
    (2)由题意,点M,N的坐标为M(,n),N(,n),
    ∵0<n<6,
    ∴<0,
    ∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
    ∴n=3时,△BMN的面积最大.

    相关试卷

    北京市重点中学2023届中考数学全真模拟试题含解析: 这是一份北京市重点中学2023届中考数学全真模拟试题含解析,共19页。

    北京市楼梓庄中学2022年中考数学全真模拟试题含解析: 这是一份北京市楼梓庄中学2022年中考数学全真模拟试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,如果,那么代数式的值是等内容,欢迎下载使用。

    北京七中学2021-2022学年中考数学全真模拟试题含解析: 这是一份北京七中学2021-2022学年中考数学全真模拟试题含解析,共18页。试卷主要包含了下列各式正确的是,下列实数中,最小的数是,计算的结果是,已知抛物线y=x2+等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map