2022年西藏自治区拉萨市达孜区孜县中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.若(x﹣1)0=1成立,则x的取值范围是( )
A.x=﹣1 B.x=1 C.x≠0 D.x≠1
2.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:
①a、b同号;
②当x=1和x=3时,函数值相等;
③4a+b=1;
④当y=﹣2时,x的值只能取1;
⑤当﹣1<x<5时,y<1.
其中,正确的有( )
A.2个 B.3个 C.4个 D.5个
3.下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是正方形
B.等腰梯形既是轴对称图形又是中心对称图形
C.圆的切线垂直于经过切点的半径
D.垂直于同一直线的两条直线互相垂直
4.二次函数(a≠0)的图象如图所示,则下列命题中正确的是( )
A.a >b>c
B.一次函数y=ax +c的图象不经第四象限
C.m(am+b)+b<a(m是任意实数)
D.3b+2c>0
5.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是( )
A.将l1向左平移2个单位 B.将l1向右平移2个单位
C.将l1向上平移2个单位 D.将l1向下平移2个单位
6.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )
A. B. C. D.
7.-2的绝对值是()
A.2 B.-2 C.±2 D.
8.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( )
A.280×103 B.28×104 C.2.8×105 D.0.28×106
9.下面调查方式中,合适的是( )
A.调查你所在班级同学的体重,采用抽样调查方式
B.调查乌金塘水库的水质情况,采用抽样调査的方式
C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式
D.要了解全市初中学生的业余爱好,采用普查的方式
10.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.
甲
乙
丙
丁
7
8
8
7
s2
1
1.2
0.9
1.8
12.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.
①MN=BM+DN
②△CMN的周长等于正方形ABCD的边长的两倍;
③EF1=BE1+DF1;
④点A到MN的距离等于正方形的边长
⑤△AEN、△AFM都为等腰直角三角形.
⑥S△AMN=1S△AEF
⑦S正方形ABCD:S△AMN=1AB:MN
⑧设AB=a,MN=b,则≥1﹣1.
13.当x为_____时,分式的值为1.
14.因式分解:x2﹣3x+(x﹣3)=_____.
15.如图,在四边形ABCD中,,AC、BD相交于点E,若,则______.
16.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.
三、解答题(共8题,共72分)
17.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.
18.(8分)校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.
19.(8分)自学下面材料后,解答问题。
分母中含有未知数的不等式叫分式不等式。如: <0等。那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:
若a>0,b>0,则>0;若a<0,b<0,则>0;
若a>0,b<0,则<0;若a<0,b>0,则<0.
反之:若>0,则 或 ,
(1)若<0,则___或___.
(2)根据上述规律,求不等式 >0的解集.
20.(8分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于1.
21.(8分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.
(1)求证:;
(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果与相似,求BP的长.
22.(10分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)
23.(12分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:
(1)试判断ac的符号;
(2)若c=-1,该二次函数图象与y轴交于点C,且S△ABC=1.
①求a的值;
②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.
24.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为 ;
②当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题解析:由题意可知:x-1≠0,
x≠1
故选D.
2、A
【解析】
根据二次函数的性质和图象可以判断题目中各个小题是否成立.
【详解】
由函数图象可得,
a>1,b<1,即a、b异号,故①错误,
x=-1和x=5时,函数值相等,故②错误,
∵-=2,得4a+b=1,故③正确,
由图象可得,当y=-2时,x=1或x=4,故④错误,
由图象可得,当-1<x<5时,y<1,故⑤正确,
故选A.
【点睛】
考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
3、C
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
解答:解:A、错误,例如对角线互相垂直的等腰梯形;
B、错误,等腰梯形是轴对称图形不是中心对称图形;
C、正确,符合切线的性质;
D、错误,垂直于同一直线的两条直线平行.
故选C.
4、D
【解析】
解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;
B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;
C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;
D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②
①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;
故选D.
点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
5、C
【解析】
根据“上加下减”的原则求解即可.
【详解】
将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
故选:C.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
6、D
【解析】
根据抛物线和直线的关系分析.
【详解】
由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.
故选D
【点睛】
考核知识点:反比例函数图象.
7、A
【解析】
根据绝对值的性质进行解答即可
【详解】
解:﹣1的绝对值是:1.
故选:A.
【点睛】
此题考查绝对值,难度不大
8、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将280000用科学记数法表示为2.8×1.故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、B
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A、调查你所在班级同学的体重,采用普查,故A不符合题意;
B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;
C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;
D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;
故选B.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、A
【解析】
根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
【详解】
设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
根据题意列方程为:.
故选:.
【点睛】
本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、丙
【解析】
先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.
【详解】
因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,
所以丙组的成绩比较稳定,
所以丙组的成绩较好且状态稳定,应选的组是丙组.
故答案为丙.
【点睛】
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.
12、①②③④⑤⑥⑦.
【解析】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.
【详解】
将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.
则∠DAH=∠BAM,
∵四边形ABCD是正方形,
∴∠BAD=90°,
∵∠MAN=45°,
∴∠BAN+∠DAN=45°,
∴∠NAH=45°,
在△MAN和△HAN中,
,
∴△MAN≌△HAN,
∴MN=NH=BM+DN,①正确;
∵BM+DN≥1,(当且仅当BM=DN时,取等号)
∴BM=DN时,MN最小,
∴BM=b,
∵DH=BM=b,
∴DH=DN,
∵AD⊥HN,
∴∠DAH=∠HAN=11.5°,
在DA上取一点G,使DG=DH=b,
∴∠DGH=45°,HG=DH=b,
∵∠DGH=45°,∠DAH=11.5°,
∴∠AHG=∠HAD,
∴AG=HG=b,
∴AB=AD=AG+DG=b+b=b=a,
∴,
∴,
当点M和点B重合时,点N和点C重合,此时,MN最大=AB,
即:,
∴≤≤1,⑧错误;
∵MN=NH=BM+DN
∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,
∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;
∵△MAN≌△HAN,
∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;
如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.
∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,
∴∠EAH=∠EAF=45°,
∵EA=EA,AH=AD,
∴△EAH≌△EAF,
∴EF=HE,
∵∠ABH=∠ADF=45°=∠ABD,
∴∠HBE=90°,
在Rt△BHE中,HE1=BH1+BE1,
∵BH=DF,EF=HE,
∵EF1=BE1+DF1,③结论正确;
∵四边形ABCD是正方形,
∴∠ADC=90°,∠BDC=∠ADB=45°,
∵∠MAN=45°,
∴∠EAN=∠EDN,
∴A、E、N、D四点共圆,
∴∠ADN+∠AEN=180°,
∴∠AEN=90°
∴△AEN是等腰直角三角形,
同理△AFM是等腰直角三角形;⑤结论正确;
∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,
∴AM=AF,AN=AE,
如图3,过点M作MP⊥AN于P,
在Rt△APM中,∠MAN=45°,
∴MP=AMsin45°,
∵S△AMN=AN•MP=AM•AN•sin45°,
S△AEF=AE•AF•sin45°,
∴S△AMN:S△AEF=1,
∴S△AMN=1S△AEF,⑥正确;
∵点A到MN的距离等于正方形ABCD的边长,
∴S正方形ABCD:S△AMN==1AB:MN,⑦结论正确.
即:正确的有①②③④⑤⑥⑦,
故答案为①②③④⑤⑥⑦.
【点睛】
此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.
13、2
【解析】
分式的值是1的条件是,分子为1,分母不为1.
【详解】
∵3x-6=1,
∴x=2,
当x=2时,2x+1≠1.
∴当x=2时,分式的值是1.
故答案为2.
【点睛】
本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.
14、 (x-3)(x+1);
【解析】
根据因式分解的概念和步骤,可先把原式化简,然后用十字相乘分解,即原式=x2﹣3x+x﹣3
=x2﹣2x﹣3=(x﹣3)(x+1);或先把前两项提公因式,然后再把x-3看做整体提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).
故答案为(x﹣3)(x+1).
点睛:此题主要考查了因式分解,关键是明确因式分解是把一个多项式化为几个因式积的形式.再利用因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),进行分解因式即可.
15、
【解析】
利用相似三角形的性质即可求解;
【详解】
解:∵ AB∥CD,
∴△AEB∽△CED,
∴ ,
∴ ,
故答案为 .
【点睛】
本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.
16、
【解析】
将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
【详解】
解:将三个小区分别记为A、B、C,
列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为=.
故答案为:.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题(共8题,共72分)
17、 (1)证明见解析;(2)1-π.
【解析】
(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
【详解】
(1)过C作CF⊥AB于F.
∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
∵CF⊥AB,∴AB为⊙C的切线;
(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
【点睛】
本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
18、(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.
【解析】
(1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,再根据矩形面积公式列方程求解即可得到答案.
(1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.
【详解】
(1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,
根据题意得:x(31﹣1x)=116,
解得:x1=7,x1=9,
∴31﹣1x=18或31﹣1x=14,
∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.
(1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,
根据题意得:y(36﹣1y)=172,
整理得:y1﹣18y+85=2.
∵△=(﹣18)1﹣4×1×85=﹣16<2,
∴该方程无解,
∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.
19、(1) 或;(2)x>2或x<−1.
【解析】
(1)根据两数相除,异号得负解答;
(2)先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.
【详解】
(1)若>0,则 或 ;
故答案为: 或;
(2)由上述规律可知,不等式转化为或,
所以,x>2或x<−1.
【点睛】
此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.
20、(1);(2).
【解析】
根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率.
【详解】
第二次
第一次
6
﹣2
7
6
(6,6)
(6,﹣2)
(6,7)
﹣2
(﹣2,6)
(﹣2,﹣2)
(﹣2,7)
7
(7,6)
(7,﹣2)
(7,7)
(1)P(两数相同)=.
(2)P(两数和大于1)=.
【点睛】
本题考查了利用列表法、画树状图法求等可能事件的概率.
21、(1)见解析;(2);(3)当或8时,与相似.
【解析】
(1)想办法证明即可解决问题;
(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;
(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;
【详解】
(1)证明:四边形ABCD是等腰梯形,
,
,
,
,
,
,
.
(2)解:作于M,于N.则四边形是矩形.
在中,,
,
,
,
,
.
(3)解:,
,
,
相似时,与相似,
,
当时,,此时,
当时,,此时,
综上所述,当PB=5或8时,与△相似.
【点睛】
本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.
22、至少涨到每股6.1元时才能卖出.
【解析】
根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.
【详解】
解:设涨到每股x元时卖出,
根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,
解这个不等式得x≥,
即x≥6.1.
答:至少涨到每股6.1元时才能卖出.
【点睛】
本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.
23、 (1) ac<3;(3)①a=1;②m>或m<.
【解析】
(1)设A (p,q).则B (-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;
(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根据三角形的面积公式列方程即可得到结果;②由①可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4).得到这些MN的解析式y=x+(-1≤x≤3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程组即可得到结论.
【详解】
(1)设A (p,q).则B (-p,-q),
把A、B坐标代入解析式可得:
,
∴3ap3+3c=3.即p3=−,
∴−≥3,
∵ac≠3,
∴−>3,
∴ac<3;
(3)∵c=-1,
∴p3=,a>3,且C(3,-1),
∴p=±,
①S△ABC=×3×1=1,
∴a=1;
②由①可知:抛物线解析式为y=x3-3mx-1,
∵M(-1,1)、N(3,4).
∴MN:y=x+(-1≤x≤3),
依题,只需联立在-1≤x≤3内只有一个解即可,
∴x3-3mx-1=x+,
故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,
建立新的二次函数:y=x3-(3m+)x-,
∵△=(3m+)3+11>3且c=-<3,
∴抛物线y=x3−(3m+)x−与x轴有两个交点,且交y轴于负半轴.
不妨设方程x3−(3m+)x−=3的两根分别为x1,x3.(x1<x3)
则x1+x3=3m+,x1x3=−
∵方程x3−(3m+)x−=3在-1≤x≤3内只有一个解.
故分两种情况讨论:
(Ⅰ)若-1≤x1<3且x3>3:则
.即:,
可得:m>.
(Ⅱ)若x1<-1且-1<x3≤3:则
.即:,
可得:m<,
综上所述,m>或m<.
【点睛】
本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键.
24、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
【解析】
(1)①当AC=BC=2时,△ABC为等腰直角三角形;
②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
【详解】
(1)若△CEF与△ABC相似.
①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,
此时D为AB边中点,AD=AC=.
②当AC=3,BC=4时,有两种情况:
(I)若CE:CF=3:4,如答图2所示,
∵CE:CF=AC:BC,∴EF∥BC.
由折叠性质可知,CD⊥EF,
∴CD⊥AB,即此时CD为AB边上的高.
在Rt△ABC中,AC=3,BC=4,∴BC=1.
∴cosA=.∴AD=AC•cosA=3×=.
(II)若CF:CE=3:4,如答图3所示.
∵△CEF∽△CAB,∴∠CEF=∠B.
由折叠性质可知,∠CEF+∠ECD=90°.
又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
∴此时AD=AB=×1=.
综上所述,当AC=3,BC=4时,AD的长为或.
(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
如图所示,连接CD,与EF交于点Q.
∵CD是Rt△ABC的中线
∴CD=DB=AB,
∴∠DCB=∠B.
由折叠性质可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.
2024年西藏自治区拉萨市城关区拉萨江苏实验中学中考一模数学试题(原卷版+解析版): 这是一份2024年西藏自治区拉萨市城关区拉萨江苏实验中学中考一模数学试题(原卷版+解析版),文件包含2024年西藏自治区拉萨市城关区拉萨江苏实验中学中考一模数学试题原卷版docx、2024年西藏自治区拉萨市城关区拉萨江苏实验中学中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
2023-2024学年西藏自治区拉萨市达孜区孜县八上数学期末联考试题含答案: 这是一份2023-2024学年西藏自治区拉萨市达孜区孜县八上数学期末联考试题含答案,共7页。试卷主要包含了如图,正方形ABCD的面积是等内容,欢迎下载使用。
西藏自治区拉萨市达孜区孜县2022-2023学年数学七下期末经典试题含答案: 这是一份西藏自治区拉萨市达孜区孜县2022-2023学年数学七下期末经典试题含答案,共7页。