2022年苏州工业园区中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )
A.= B.=
C.= D.=
2.下列各数中比﹣1小的数是( )
A.﹣2 B.﹣1 C.0 D.1
3.关于x的方程=无解,则k的值为( )
A.0或 B.﹣1 C.﹣2 D.﹣3
4.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是( )
A.1 B.2 C.﹣ D.﹣
5.若分式在实数范围内有意义,则实数的取值范围是( )
A. B. C. D.
6.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是( )
A.a< B.a> C.a<﹣ D.a>﹣
7.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于( )
A. B.2 C.4 D.3
8.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有( )
A.4个 B.3个 C.2个 D.1个
9.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
A. B. C. D.
10.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则ba的值是( )
A. B.- C.4 D.-1
11.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为( )
A. B. C. D.
12.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高
A.—7℃ B.7℃ C.—1℃ D.1℃
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.(2017四川省攀枝花市)若关于x的分式方程无解,则实数m=_______.
14.如图,ΔABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到ΔA′B′C′,且点A在A′B′上,则旋转角为________________°.
15.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.
16.已知直线与抛物线交于A,B两点,则_______.
17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.
18.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:
(1)图(1)中的BC长是多少?
(2)图(2)中的a是多少?
(3)图(1)中的图形面积是多少?
(4)图(2)中的b是多少?
20.(6分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.
(1)求坡角∠BCD;
(2)求旗杆AB的高度.
(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
21.(6分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
22.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.
23.(8分)如下表所示,有A、B两组数:
第1个数
第2个数
第3个数
第4个数
……
第9个数
……
第n个数
A组
﹣6
﹣5
﹣2
……
58
……
n2﹣2n﹣5
B组
1
4
7
10
……
25
……
(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
24.(10分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.
25.(10分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)
26.(12分)已知BD平分∠ABF,且交AE于点D.
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
27.(12分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.
【详解】
设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.
故选A.
【点睛】
本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.
2、A
【解析】
根据两个负数比较大小,绝对值大的负数反而小,可得答案.
【详解】
解:A、﹣2<﹣1,故A正确;
B、﹣1=﹣1,故B错误;
C、0>﹣1,故C错误;
D、1>﹣1,故D错误;
故选:A.
【点睛】
本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.
3、A
【解析】
方程两边同乘2x(x+3),得
x+3=2kx,
(2k-1)x=3,
∵方程无解,
∴当整式方程无解时,2k-1=0,k=,
当分式方程无解时,①x=0时,k无解,
②x=-3时,k=0,
∴k=0或时,方程无解,
故选A.
4、C
【解析】
试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1•x2=﹣4代入,即可求出=.
故选C.
考点:根与系数的关系
5、D
【解析】
根据分式有意义的条件即可求出答案.
【详解】
解:由分式有意义的条件可知:,
,
故选:.
【点睛】
本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
6、D
【解析】
先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.
【详解】
解方程3x+2a=x﹣5得
x=,
因为方程的解为负数,
所以<0,
解得:a>﹣.
【点睛】
本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.
7、B
【解析】
【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.
【详解】点C在双曲线y=上,AC∥y轴,BC∥x轴,
设C(a,),则B(3a,),A(a,),
∵AC=BC,
∴﹣=3a﹣a,
解得a=1,(负值已舍去)
∴C(1,1),B(3,1),A(1,3),
∴AC=BC=2,
∴Rt△ABC中,AB=2,
故选B.
【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
8、B
【解析】
根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.
【详解】
解:由数轴,得a=-3.5,b=-2,c=0,d=2,
①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;
故选B.
【点睛】
本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.
9、D
【解析】
试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
试题解析:画树状图如下:
共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
故选D.
考点:列表法与树状法.
10、A
【解析】
根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.
【详解】
解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,
∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,
解得a=2,b=,
∴ba=()2=.
故选A.
11、D
【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.
点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.
12、B
【解析】
求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.
【详解】
3-(-4)=3+4=7℃.
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3或1.
【解析】
解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;
②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.
综上所述:∴m的值为3或1.
故答案为3或1.
14、50度
【解析】
由将△ACB绕点C顺时针旋转得到△A′B′C′,即可得△ACB≌△A′B′C′,则可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度数,即可求得∠ACB'的度数,继而求得∠B'CB的度数.
【详解】
∵将△ACB绕点C顺时针旋转得到,
∴△ACB≌,
∴∠A′=∠BAC,AC=CA′,
∴∠BAC=∠CAA′,
∵△ACB中,∠ACB=90°,∠ABC=25°,
∴∠BAC=90∘−∠ABC=65°,
∴∠BAC=∠CAA′=65°,
∴∠B′AB=180°−65°−65°=50°,
∴∠ACB′=180°−25°−50°−65°=40°,
∴∠B′CB=90°−40°=50°.
故答案为50.
【点睛】
此题考查了旋转的性质、直角三角形的性质以及等腰三角形的性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
15、1
【解析】
如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.
【详解】
如图作点D关于BC的对称点D′,连接PD′,ED′,
在Rt△EDD′中,∵DE=6,DD′=1,
∴ED′==10,
∵DP=PD′,
∴PD+PF=PD′+PF,
∵EF=EA=2是定值,
∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,
∴PF+PD的最小值为1,
故答案为1.
【点睛】
本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.
16、
【解析】
将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x +x =- = ,xx= =-1”,将原代数式通分变形后代入数据即可得出结论.
【详解】
将代入到中得,,整理得,,∴,,
∴.
【点睛】
此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式
17、.
【解析】
试题分析:要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求
AE.因此设AE=x,由折叠可知,EC=x,BE=4﹣x,
在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,
解得:x=,即AE=AF=,
因此可求得=×AF×AB=××3=.
考点:翻折变换(折叠问题)
18、
【解析】
作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.
【详解】
如图,分别连接OA、OB、OD;
∵OA=OB= ,AB=2,
∴△OAB是等腰直角三角形,
∴∠OAB=45°;
同理可证:∠OAD=45°,
∴∠DAB=90°;
∵∠CAB=60°,
∴∠DAC=90°−60°=30°,
∴旋转角的正切值是,
故答案为:.
【点睛】
此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)8cm(2)24cm2(3)60cm2(4) 17s
【解析】
(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;
(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;
(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,
(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.
【详解】
(1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) ;
(2) a=S△ABC=×6×8=24(㎝2) ;
(3) 同理,由图象知 CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝
∴图1中的图象面积为6×14-4×6=60㎝2 ;
(4) 图1中的多边形的周长为(14+6)×2=40㎝ b=(40-6)÷2=17秒.
20、旗杆AB的高度为6.4米.
【解析】
分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;
(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.
本题解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD= ,
∴∠BCD=30°;
(2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,
则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),
∵∠AEG=45°,∴AG=DE=10(米),
在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),
则AB=AG−BG=10−3.6=6.4(米).
答:旗杆AB的高度为6.4米。
21、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
【解析】
(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
【详解】
(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
根据题意得:
方程两边同乘以,得
解得:
经检验,是原方程的解.
∴当时,.
答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
方案一:由甲工程队单独完成.所需费用为:(万元);
方案二:由乙工程队单独完成.所需费用为:(万元);
方案三:由甲乙两队合作完成.所需费用为:(万元).
∵∴应该选择甲工程队承包该项工程.
【点睛】
本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
22、(1)10;(2).
【解析】
(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得 x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;
(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB=,最后代入EF=PB即可得出线段EF的长度不变
【详解】
(1)如图1,∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴∠1+∠3=90°,
∵由折叠可得∠APO=∠B=90°,
∴∠1+∠2=90°,∴∠2=∠3,
又∵∠D=∠C,
∴△OCP∽△PDA;
∵△OCP与△PDA的面积比为1:4,
∴ ,∴ CP=AD=4
设OP=x,则CO=8﹣x,
在Rt△PCO中,∠C=90°,由勾股定理得 x2=(8﹣x)2+42,
解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;
(2)作MQ∥AN,交PB于点Q,如图2,
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,
∴BN=QM.
∵MP=MQ,ME⊥PQ,
∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,
∴△MFQ≌△NFB.
∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,
由(1)中的结论可得:PC=4,BC=8,∠C=90°,
∴PB=,∴EF=PB=2,
∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为2.
【点睛】
本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形
23、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析
【解析】
(1)将n=4代入n2-2n-5中即可求解;
(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;
(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.
【详解】
解:(1))∵A组第n个数为n2-2n-5,
∴A组第4个数是42-2×4-5=3,
故答案为3;
(2)第n个数是.
理由如下:
∵第1个数为1,可写成3×1-2;
第2个数为4,可写成3×2-2;
第3个数为7,可写成3×3-2;
第4个数为10,可写成3×4-2;
……
第9个数为25,可写成3×9-2;
∴第n个数为3n-2;
故答案为3n-2;
(3)不存在同一位置上存在两个数据相等;
由题意得,,
解之得,
由于是正整数,所以不存在列上两个数相等.
【点睛】
本题考查了数字的变化类,正确的找出规律是解题的关键.
24、(1)见解析;(2)△ADF的面积是.
【解析】
试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC=,求出OM,根据cos∠BAC=,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.
试题解析:
(1)证明:连接OD,CD,
∵AC是⊙O的直径,
∴∠CDA=90°=∠BDC,
∵OE∥AB,CO=AO,
∴BE=CE,
∴DE=CE,
∵在△ECO和△EDO中
,
∴△ECO≌△EDO,
∴∠EDO=∠ACB=90°,
即OD⊥DE,OD过圆心O,
∴ED为⊙O的切线.
(2)过O作OM⊥AB于M,过F作FN⊥AB于N,
则OM∥FN,∠OMN=90°,
∵OE∥AB,
∴四边形OMFN是矩形,
∴FN=OM,
∵DE=4,OC=3,由勾股定理得:OE=5,
∴AC=2OC=6,
∵OE∥AB,
∴△OEC∽△ABC,
∴,
∴,
∴AB=10,
在Rt△BCA中,由勾股定理得:BC==8,
sin∠BAC=,
即 ,
OM==FN,
∵cos∠BAC=,
∴AM=
由垂径定理得:AD=2AM=,
即△ADF的面积是AD×FN=××=.
答:△ADF的面积是.
【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.
25、通信塔CD的高度约为15.9cm.
【解析】
过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.
【详解】
过点A作AE⊥CD于E,
则四边形ABDE是矩形,
设CE=xcm,
在Rt△AEC中,∠AEC=90°,∠CAE=30°,
所以AE=xcm,
在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,
DM=cm,
在Rt△ABM中,BM=cm,
∵AE=BD,
∴,
解得:x=+3,
∴CD=CE+ED=+9≈15.9(cm),
答:通信塔CD的高度约为15.9cm.
【点睛】
本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.
26、 (1)见解析:(2)见解析.
【解析】
试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
试题解析:(1)如图所示:
(2)如图:
在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
考点:1.菱形的判定;2.作图—基本作图.
27、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
【解析】
(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.
【详解】
(1)设抛物线解析式为,
当时,,
点的坐标为,
将点坐标代入解析式得,
解得:,
抛物线的函数表达式为;
(2)由抛物线的对称性得,
,
当时,,
矩形的周长
,
,
,
,
当时,矩形的周长有最大值,最大值为;
(3)如图,
当时,点、、、的坐标分别为、、、,
矩形对角线的交点的坐标为,
直线平分矩形的面积,
点是和的中点,
,
由平移知,
是的中位线,
,
所以抛物线向右平移的距离是1个单位.
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.
2024年中考押题预测卷(江苏苏州卷)数学(解析版): 这是一份2024年中考押题预测卷(江苏苏州卷)数学(解析版),共24页。
江苏省苏州市区重点名校2021-2022学年中考数学押题卷含解析: 这是一份江苏省苏州市区重点名校2021-2022学年中考数学押题卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022年苏州市中考数学押题卷含解析: 这是一份2022年苏州市中考数学押题卷含解析,共17页。试卷主要包含了下列式子一定成立的是,计算,魏晋时期的数学家刘徽首创割圆术等内容,欢迎下载使用。