上海2021_2022学年数学中考二模复习第18题专题(无答)
展开
这是一份上海2021_2022学年数学中考二模复习第18题专题(无答),共10页。试卷主要包含了如图,矩形ABCD中,AB=2等内容,欢迎下载使用。
1.如图,已知在△ABC中,AB=AC=4,∠BAC=30°,将△ABC绕点A顺时针旋转,使点B落在点B1处,点C落在点C1处,且BB1⊥AC.联结B1C和C1C,那么△B1C1C的面积等于____________
2.如图,已知在平面直角坐标系中,点A在x轴正半轴上,点B在第一象限内,反比例函数y=的图象经过△OAB的顶点B和边AB的中点C,如果△OAB的面积为6,那么k的值是___________3.如图,已知在平行四边形ABCD中,AB=10,BC=15,tan∠A=,点P是边AD上一点,联结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,如果点Q恰好落在平行四边形ABCD的边上,那么AP的值是________4.如图,平面直角坐标系中,A(8,0),B(8,4),C(0,4),反比例函数y=在第一象限内的图象分别与线段AB、BC交于点F、E,连接EF.如果点B关于EF的对称点恰好落在OA边上.那么k的值为___________
5.我们把反比例函数图象上到原点距离相等的点叫做反比例函数图象上的等距点.如果第一象限内点A(2,4)与点B是某反比例函数图象上的等距点,那么点A、B之间的距离是_________6.如图,在△ABC中,AD是BC边上的中线,∠ADC=60°,BC=3AD.将△ABD沿直线AD翻折,点B落在平面上的B′处,联结AB′交BC于点E,那么的值为 _______
7.如图,在等腰梯形ABCD中,AD∥BC.将△ABD沿对角线BD翻折,点A的对应点E恰好位于边BC上,且BE:EC=3:2,则∠C的余切值是________8.如图,矩形ABCD中,AB=6,BC=10,将矩形ABCD绕着点A逆时针旋转后,点D落在边BC上,点B落在点B′处,联结BB′,那么△ABB′的面积是__________ 9.如图,在平面直角坐标系xOy中,点A和点E(6,-2)都在反比例函数y=的图象上,如果∠AOE=45°,那么直线OA的表达式是_________10.我们把直角坐标平面内横、纵坐标互相交换的两个点称为“关联点对”,如点A(2,3)和点B(3,2)为一对“关联点对”.如果反比例函数y=在第一象限内的图象上有一对“关联点对”,且这两个点之间的距离为3,那么这对“关联点对”中,距离x轴较近的点的坐标为________11.如图,矩形ABCD中,AB=2.AD=5,点E是BC边上一点,联结AE,将AE绕点E顺时针旋转90°,点A的对应点记为点F,如果点F在对角线BD上,那么=________12.如图,在Rt△ABC中,∠C=90°,AB=9,BC=6,DE∥BC,且CD=2AD,以点C为圆心,r为半径作⊙C.如果⊙C与线段BE有两个交点,那么⊙C的半径r的取值范围是________ 13.如图,正方形ABCD的边长为4,点M在边DC上,将△BCM沿直线BM翻折,使得点C落在同一平面内的点C′处,联结DC′并延长交正方形ABCD一边于点N.当BN=DM时,CM的长为__________14.如图,已知在正方形网格中,点A、B、C、D在小正方形的顶点上,线段AB与线段CD相交于点O,那么tan∠AOC=_______15.如果一条直线把一个平面图形的面积分成相等的两部分,那么我们把这条直线叫做这个平面图形的面积等分线.已知在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2,过点E的面积等分线与菱形的另一条边交于点F,那么线段EF的长为________16.如图,已知在△ABC中,∠C=90°,∠B=30°,AC=2,点D是边BC的中点,点E是边AB上一点,将△BDE沿直线DE翻折,点B落在B'处,联结AB',如果∠AB'D=90°,那么线段AE的长为_______17.如图,已知△ABC中,∠C=90°,AB=6,CD是斜边AB的中线.将△ABC绕点A旋转,点B、点C分别落在点B′、点C′处,且点B′在射线CD上,边AC'与射线CD交于点E.如果=3,那么线段CE的长是_____18.如图,在△ABC中,AB=AC=4,BC=6,把△ABC绕着点B顺时针旋转,当点A与边BC上的点A′重合时,那么∠AA′B的余弦值等于_____19.如图,在矩形ABCD中,AB=3,BC=4,点E在对角线BD上,联结AE,作EF⊥AE交边BC于F,若BF=,那么BE=_________
20.已知矩形纸片ABCD的边AB=10,BC=12(如图),将它折叠后,点D落在边AB的中点处,那么折痕的长为__________21.在一个三角形中,如果有一个内角是另一内角的n倍(n为整数),那么我们称这个三角形为n倍角三角形,如果一个三角形既是2倍角三角形,又是3倍角三角形,那么这个三角形最小的内角度数为_________ 22.如图,在矩形ABCD中,AB=3,BC=4,点P为射线BC上的一个动点,过点P的直线PQ垂直于AP与直线CD相交于点Q,当BP=5时,CQ=_____23.如图,在平面直角坐标系xOy中,等腰直角三角形OAB的斜边OA在x轴上,且OA=4,如果抛物线y=ax2+bx+c向下平移4个单位后恰好能同时经过O、A、B三点,那么a+b+c=____________24.对于任意三角形,如果存在一个菱形,使得这个菱形的一条边与三角形的一条边重合,且三角形的这条边所对的顶点在菱形的这条边的对边上,那么称这个菱形为该三角形的“最优覆盖菱形”.
问题:如图,在△ABC中,AB=AC,BC=4,且△ABC的面积为m,如果△ABC存在“最优覆盖菱形”为菱形BCMN,那么m的取值范围是________25.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.将△ABC翻折,使点C落在AB边上的点D处,折痕EF交边AC于点E,交边BC于点F,如果DE∥BC,则线段EF的长为___________ 26.如图是一个正方形和两个等边三角形,若∠3=80°,则∠1+∠2=________ 27.如图,双曲线y=(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是________
28.将联结四边形对边中点的线段称为“中对线”.凸四边形ABCD的对角线AC=BD=4,且两条对角线的夹角为60°,那么该四边形较短的“中对线”的长度为__________29.如图,矩形ABCD中,点E、F分别在AD、BC边上,DE=2AE、BF=2CF,将四边形ABFE沿BF所在直线翻折,点A落在点A'处,点E落在点E'处,如果EF⊥CE',那么的值为_________30.如图,在半径为2的⊙O中,弦AB与弦CD相交于点M,如果AB=CD=2,∠AMC=120°,那么OM的长为________31.在△ABC中,∠C=90°,AC=3,将△ABC绕着点A旋转,点C恰好落在AB的中点上,设点B旋转后的对应点为点D,则CD的长为_______32.在矩形ABCD中,AC、BD相交于点O,AB=4cm,AD=8cm.Q为直线BC上一动点,如果以5cm为半径的⊙Q与矩形ABCD的各边有4个公共点,那么线段OQ长的取值范围是__________33.为了估计某个鱼塘里的鱼的数量,养殖工人网住了50条鱼,在每条鱼的尾巴上做个记号后,又将鱼放回鱼塘.等鱼游散后再随机撒网,网住60条鱼,发现其中有2条鱼的尾巴上有记号.设该鱼塘里有x条鱼,依据题意,可以列出方程:______________34.在矩形ABCD中,AB=6,BC=4(如图),点E是边AB的中点,联结DE.将△DAE沿直线DE翻折,点A的对应点为A',那么点A'到直线BC的距离为______________35.已知等腰三角形ABC中,AB=AC,BC=6,以A为圆心2为半径长作⊙A,以B为圆心BC为半径作⊙B,如果⊙A与⊙B内切,那么△ABC的面积等于____________36.如图,正方形ABCD中,AB=4,E为边BC的中点,点F在AE上,过点F作MN⊥AE,分别交边AB、DC于点M、N,联结FC,如果△FNC是以CN为底边的等腰三角形,那么FC=___________
相关试卷
这是一份上海2021_2022学年数学中考二模复习第24题专题(无答案),共12页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份上海2021_2022学年数学中考二模复习函数及应用(不包括24题)专题(无答案),共11页。试卷主要包含了定义等内容,欢迎下载使用。
这是一份上海2021_2022学年数学中考二模复习锐角三角比专题(无答),共8页。试卷主要包含了七宝琉璃玲珑塔等内容,欢迎下载使用。