终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年江苏省南京二十九中学中考数学猜题卷含解析

    立即下载
    加入资料篮
    2022年江苏省南京二十九中学中考数学猜题卷含解析第1页
    2022年江苏省南京二十九中学中考数学猜题卷含解析第2页
    2022年江苏省南京二十九中学中考数学猜题卷含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省南京二十九中学中考数学猜题卷含解析

    展开

    这是一份2022年江苏省南京二十九中学中考数学猜题卷含解析,共27页。试卷主要包含了不等式组的解集在数轴上表示为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为

    A.12 B.20 C.24 D.32
    2.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=(  )

    A.30° B.40° C.50° D.60°
    3.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为( )

    A. B. C. D.
    4.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )
    A.k>- B.k>-且 C.k1;
    解不等式②得,x>2;
    ∴不等式组的解集为:x≥2,
    在数轴上表示为:

    故选A.
    【点睛】
    本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.
    11、B
    【解析】
    试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.
    12、C
    【解析】
    由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.
    【详解】
    解:由题意知,△AFB≌△AED
    ∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.
    ∴AE⊥AF,故此选项①正确;
    ∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;
    ∵△AEF是等腰直角三角形,有EF:AF=:1,故此选项②正确;
    ∵△AEF与△AHF不相似,
    ∴AF2=FH·FE不正确.故此选项③错误,
    ∵HB//EC,
    ∴△FBH∽△FCE,
    ∴FB:FC=HB:EC,故此选项⑤正确.
    故选:C
    【点睛】
    本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、k≥-1
    【解析】
    首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.
    【详解】
    当时,方程是一元一次方程:,方程有实数根;
    当时,方程是一元二次方程,
    解得:且.
    综上所述,关于的方程有实数根,则的取值范围是.
    故答案为
    【点睛】
    考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略
    这种情况.
    14、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
    【解析】
    通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
    【详解】
    通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
    所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
    15、a(b+3)(b﹣3).
    【解析】
    根据提公因式,平方差公式,可得答案.
    【详解】
    解:原式=a(b2﹣9)
    =a(b+3)(b﹣3),
    故答案为:a(b+3)(b﹣3).
    【点睛】
    本题考查了因式分解,一提,二套,三检查,分解要彻底.
    16、5
    【解析】
    作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.
    【详解】
    解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,

    设CM=a,
    ∵AB=AC,
    ∴BC=2CM=2a,
    ∵tan∠ACB=2,
    ∴=2,
    ∴AM=2a,
    由勾股定理得:AC=a,
    S△BDC=BC•DH=10,
    •2a•DH=10,
    DH=,
    ∵∠DHM=∠HMG=∠MGD=90°,
    ∴四边形DHMG为矩形,
    ∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
    ∵∠ADC=90°=∠ADG+∠CDG,
    ∴∠ADG=∠CDH,
    在△ADG和△CDH中,
    ∵,
    ∴△ADG≌△CDH(AAS),
    ∴DG=DH=MG=,AG=CH=a+,
    ∴AM=AG+MG,
    即2a=a++,
    a2=20,
    在Rt△ADC中,AD2+CD2=AC2,
    ∵AD=CD,
    ∴2AD2=5a2=100,
    ∴AD=5或−5(舍),
    故答案为5.
    【点睛】
    本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.
    17、m>-1
    【解析】
    首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
    【详解】
    解:,
    ①+②得1x+1y=1m+4,
    则x+y=m+1,
    根据题意得m+1>0,
    解得m>﹣1.
    故答案是:m>﹣1.
    【点睛】
    本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.
    18、①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
    【解析】
    (1)在上任意取一点,分别连接,;
    (2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
    【详解】
    解:根据线段的垂直平分线的性质定理可知:,
    所以点是所在圆的圆心(理由①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆):)
    故答案为①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)
    【点睛】
    本题考查作图﹣复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)
    【解析】
    (1)连接OC,如图,利用切线的性质得CO⊥CD,则AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,从而得到∠DAC=∠CAO;
    (2)设⊙O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出∠COE=60°,然后根据扇形的面积公式,利用S阴影=S△COE﹣S扇形COB进行计算即可.
    【详解】
    解:(1)连接OC,如图,
    ∵CD与⊙O相切于点E,
    ∴CO⊥CD,
    ∵AD⊥CD,
    ∴AD∥CO,
    ∴∠DAC=∠ACO,
    ∵OA=OC,
    ∴∠ACO=∠CAO,
    ∴∠DAC=∠CAO,
    即AC平分∠DAB;
    (2)设⊙O半径为r,
    在Rt△OEC中,∵OE2+EC2=OC2,
    ∴r2+27=(r+3)2,解得r=3,
    ∴OC=3,OE=6,
    ∴cos∠COE=,
    ∴∠COE=60°,
    ∴S阴影=S△COE﹣S扇形COB=•3•3﹣.

    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和扇形的面积公式.
    20、(1)100;(2)补图见解析;(3)570人.
    【解析】
    (1)由读书1本的人数及其所占百分比可得总人数;
    (2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;
    (3)总人数乘以样本中读2本人数所占比例.
    【详解】
    (1)参与问卷调查的学生人数为(8+2)÷10%=100人,
    故答案为:100;
    (2)读4本的女生人数为100×15%﹣10=5人,
    读2本人数所占百分比为×100%=38%,
    补全图形如下:

    (3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    21、(1)详见解析;(2)1.
    【解析】
    (1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;
    (2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.
    【详解】
    (1)证明:∵AD∥BC,
    ∴∠ADB=∠CBD,
    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    ∴∠ADB=∠ABD,
    ∴AD=AB,
    ∵BA=BC,
    ∴AD=BC,
    ∴四边形ABCD是平行四边形,
    ∵BA=BC,
    ∴四边形ABCD是菱形;
    (2)解:∵DE⊥BD,

    ∴∠BDE=90°,
    ∴∠DBC+∠E=∠BDC+∠CDE=90°,
    ∵CB=CD,
    ∴∠DBC=∠BDC,
    ∴∠CDE=∠E,
    ∴CD=CE=BC,
    ∴BE=2BC=10,
    ∵BD=8,
    ∴DE==6,
    ∵四边形ABCD是菱形,
    ∴AD=AB=BC=5,
    ∴四边形ABED的周长=AD+AB+BE+DE=1.
    【点睛】
    本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.
    22、(1)y=﹣x2﹣x+3;(2)点P的坐标为(﹣,1);(3)当AM+CN的值最大时,点D的坐标为(,).
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;
    (2)过点P作PE⊥x轴,垂足为点E,则△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;
    (3)连接AC交OD于点F,由点到直线垂线段最短可找出当AC⊥OD时AM+CN取最大值,过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,根据相似三角形的性质可设点D的坐标为(﹣3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论.
    【详解】
    (1)∵直线y=x+3与x轴、y轴分别交于A、C两点,
    ∴点A的坐标为(﹣4,0),点C的坐标为(0,3).
    ∵点B在x轴上,点B的横坐标为,
    ∴点B的坐标为(,0),
    设抛物线的函数关系式为y=ax2+bx+c(a≠0),
    将A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:
    ,解得: ,
    ∴抛物线的函数关系式为y=﹣x2﹣x+3;
    (2)如图1,过点P作PE⊥x轴,垂足为点E,
    ∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,
    ∴CP=2AP,
    ∵PE⊥x轴,CO⊥x轴,
    ∴△APE∽△ACO,
    ∴,
    ∴AE=AO=,PE=CO=1,
    ∴OE=OA﹣AE=,
    ∴点P的坐标为(﹣,1);
    (3)如图2,连接AC交OD于点F,
    ∵AM⊥OD,CN⊥OD,
    ∴AF≥AM,CF≥CN,
    ∴当点M、N、F重合时,AM+CN取最大值,
    过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,
    ∴,
    ∴设点D的坐标为(﹣3t,4t).
    ∵点D在抛物线y=﹣x2﹣x+3上,
    ∴4t=﹣3t2+t+3,
    解得:t1=﹣(不合题意,舍去),t2=,
    ∴点D的坐标为(,),
    故当AM+CN的值最大时,点D的坐标为(,).

    【点睛】
    本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).
    23、3+3.5
    【解析】
    延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.
    【详解】
    如图,延长ED交BC延长线于点F,则∠CFD=90°,

    ∵tan∠DCF=i=,
    ∴∠DCF=30°,
    ∵CD=4,
    ∴DF=CD=2,CF=CDcos∠DCF=4×=2,
    ∴BF=BC+CF=2+2=4,
    过点E作EG⊥AB于点G,
    则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,
    又∵∠AED=37°,
    ∴AG=GEtan∠AEG=4•tan37°,
    则AB=AG+BG=4•tan37°+3.5=3+3.5,
    故旗杆AB的高度为(3+3.5)米.
    考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题
    24、(1)P=t+2;(2)①当0<t≤8时,w=240;当8<t≤12时,w=2t2+12t+16;当12<t≤24时,w=﹣t2+42t+88;②此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
    【解析】
    分析:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;
    (2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;
    ②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.
    详解:(1)设8<t≤24时,P=kt+b,
    将A(8,10)、B(24,26)代入,得:

    解得:,
    ∴P=t+2;
    (2)①当0<t≤8时,w=(2t+8)×=240;
    当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;
    当12<t≤24时,w=(-t+44)(t+2)=-t2+42t+88;
    ②当8<t≤12时,w=2t2+12t+16=2(t+3)2-2,
    ∴8<t≤12时,w随t的增大而增大,
    当2(t+3)2-2=336时,解题t=10或t=-16(舍),
    当t=12时,w取得最大值,最大值为448,
    此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;
    当12<t≤24时,w=-t2+42t+88=-(t-21)2+529,
    当t=12时,w取得最小值448,
    由-(t-21)2+529=513得t=17或t=25,
    ∴当12<t≤17时,448<w≤513,
    此时P=t+2的最小值为14,最大值为19;
    综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
    点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.
    25、 (1)证明见解析;(2)AD=;(3)DG=.
    【解析】
    (1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
    (2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
    (3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.
    【详解】
    (1)如图,连接OD,
    ∵AD为∠BAC的角平分线,
    ∴∠BAD=∠CAD,
    ∵OA=OD,
    ∴∠ODA=∠OAD,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵∠C=90°,
    ∴∠ODC=90°,
    ∴OD⊥BC,
    ∴BC为圆O的切线;
    (2)连接DF,由(1)知BC为圆O的切线,
    ∴∠FDC=∠DAF,
    ∴∠CDA=∠CFD,
    ∴∠AFD=∠ADB,
    ∵∠BAD=∠DAF,
    ∴△ABD∽△ADF,
    ∴,即AD2=AB•AF=xy,
    则AD= ;
    (3)连接EF,在Rt△BOD中,sinB=,
    设圆的半径为r,可得,
    解得:r=5,
    ∴AE=10,AB=18,
    ∵AE是直径,
    ∴∠AFE=∠C=90°,
    ∴EF∥BC,
    ∴∠AEF=∠B,
    ∴sin∠AEF=,
    ∴AF=AE•sin∠AEF=10×=,
    ∵AF∥OD,
    ∴,即DG=AD,
    ∴AD=,
    则DG=.

    【点睛】
    圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.
    26、(1)B(1,0),C(0,﹣4);(2)点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).
    【解析】
    试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;
    (2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到 =2,设OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;
    (1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大.
    试题解析:(1)在中,令y=0,则x=±1,令x=0,则y=﹣4,∴B(1,0),C(0,﹣4);
    故答案为1,0;0,﹣4;
    (2)存在点P,使得△PBC为直角三角形,分两种情况:
    ①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴=2,设OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴ =2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2);
    ②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴ =,∴CH=,P4H=,∴P4(,﹣﹣4);
    同理P1(﹣,﹣4);
    综上所述:点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);
    (1)如图(1),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC的延长线上时,AP的值最大,最大值=,∴OE的最大值为.故答案为.

    27、(1)见解析;(2)
    【解析】
    (1)根据题意作出图形即可;
    (2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.
    【详解】
    (1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,
    则直线PQ即为所求;

    (2)由(1)知,PD=PD′,
    ∵PD′⊥PD,
    ∴∠DPD′=90°,
    ∵∠A=90°,
    ∴∠ADP+∠APD=∠APD+∠BPD′=90°,
    ∴∠ADP=∠BPD′,
    在△ADP与△BPD′中,,
    ∴△ADP≌△BPD′,
    ∴AD=PB=4,AP= BD′
    ∵PB=AB﹣AP=6﹣AP=4,
    ∴AP=2;
    ∴PD==2,BD′=2
    ∴CD′=BC- BD′=4-2=2
    ∵PD=PD′,PD⊥PD′,
    ∵DD′=PD=2,
    ∵PQ垂直平分DD′,连接Q D′
    则DQ= D′Q
    ∴∠QD′D=∠QDD′
    ∴sin∠QD′D=sin∠QDD′=.

    【点睛】
    本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.

    相关试卷

    江苏省南京市第二十九中学2021-2022学年中考数学猜题卷含解析:

    这是一份江苏省南京市第二十九中学2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了已知二次函数y=,下列运算正确的是等内容,欢迎下载使用。

    2022年江苏省南京五中学中考猜题数学试卷含解析:

    这是一份2022年江苏省南京五中学中考猜题数学试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,方程的解为,在中,,,,则的值是,下列实数中,结果最大的是等内容,欢迎下载使用。

    2021-2022学年江苏省庙头中学中考数学猜题卷含解析:

    这是一份2021-2022学年江苏省庙头中学中考数学猜题卷含解析,共25页。试卷主要包含了下列计算正确的是,计算的正确结果是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map