|试卷下载
搜索
    上传资料 赚现金
    2022年湖南省益阳市重点中学中考冲刺卷数学试题含解析
    立即下载
    加入资料篮
    2022年湖南省益阳市重点中学中考冲刺卷数学试题含解析01
    2022年湖南省益阳市重点中学中考冲刺卷数学试题含解析02
    2022年湖南省益阳市重点中学中考冲刺卷数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省益阳市重点中学中考冲刺卷数学试题含解析

    展开
    这是一份2022年湖南省益阳市重点中学中考冲刺卷数学试题含解析,共21页。试卷主要包含了计算a•a2的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是(  )

    A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠4
    2.关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
    A. B. C. D.
    3.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是(  )

    A.0个 B.1个或2个
    C.0个、1个或2个 D.只有1个
    4.如图是一个几何体的三视图,则这个几何体是( )

    A. B. C. D.
    5.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为(  )

    A.115° B.120° C.125° D.130°
    6.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )
    A.1000(1+x)2=1000+500
    B.1000(1+x)2=500
    C.500(1+x)2=1000
    D.1000(1+2x)=1000+500
    7.计算a•a2的结果是(  )
    A.a B.a2 C.2a2 D.a3
    8.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
    ①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
    ②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
    ③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    ④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    A.③ B.①③ C.②④ D.①③④
    9.如图图形中,既是中心对称图形又是轴对称图形的是(  )
    A. B. C. D.
    10.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.不等式组的解集为_____.
    12.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x亿立方米,依题意,可列一元一次方程为_____.
    13.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.

    14.分式方程-1=的解是x=________.
    15.函数中自变量x的取值范围是_____;函数中自变量x的取值范围是______.
    16.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.
    三、解答题(共8题,共72分)
    17.(8分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.

    (1)求直线AB和反比例函数的解析式;
    (1)求△OCD的面积.
    18.(8分)如图,矩形中,对角线,相交于点,且,.动点,分别从点,同时出发,运动速度均为lcm/s.点沿运动,到点停止.点沿运动,点到点停留4后继续运动,到点停止.连接,,,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为.
    (1)求线段的长(用含的代数式表示);
    (2)求时,求与之间的函数解析式,并写出的取值范围;
    (3)当时,直接写出的取值范围.

    19.(8分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.
    (1)填空:  ;
    (2)如图1,连接,作,垂足为,求的长度;
    (3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?

    20.(8分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
    设(其中均为整数),则有.
    ∴.这样小明就找到了一种把部分的式子化为平方式的方法.
    请你仿照小明的方法探索并解决下列问题:
    当均为正整数时,若,用含m、n的式子分别表示,得=   ,=   ;
    (2)利用所探索的结论,找一组正整数,填空: +   =(   +   )2;
    (3)若,且均为正整数,求的值.
    21.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.

    (1)求证:AE=BF;
    (2)连接GB,EF,求证:GB∥EF;
    (3)若AE=1,EB=2,求DG的长.
    22.(10分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同
    (1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .
    (2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率
    23.(12分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
    (1)求证:四边形ACDF是平行四边形;
    (2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.

    24.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:A.∵∠1=∠3,∴a∥b,故A正确;
    B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;
    C. ∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;
    D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.
    故选D.
    考点:平行线的判定.
    2、B
    【解析】
    试题分析:根据题意得△=32﹣4m>0,
    解得m<.
    故选B.
    考点:根的判别式.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    3、C
    【解析】
    根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
    【详解】
    ∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
    ∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
    当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
    当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
    故选C.
    【点睛】
    考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
    4、B
    【解析】
    试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
    考点:由三视图判断几何体.
    5、C
    【解析】
    分析:
    由已知条件易得∠AEB=70°,由此可得∠DEB=110°,结合折叠的性质可得∠DEF=55°,则由AD∥BC可得∠EFC=125°,再由折叠的性质即可得到∠EFC′=125°.
    详解:
    ∵在△ABE中,∠A=90°,∠ABE=20°,
    ∴∠AEB=70°,
    ∴∠DEB=180°-70°=110°,
    ∵点D沿EF折叠后与点B重合,
    ∴∠DEF=∠BEF=∠DEB=55°,
    ∵在矩形ABCD中,AD∥BC,
    ∴∠DEF+∠EFC=180°,
    ∴∠EFC=180°-55°=125°,
    ∴由折叠的性质可得∠EFC′=∠EFC=125°.
    故选C.
    点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.
    6、A
    【解析】
    设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.
    【详解】
    设该公司第5、6个月投放科研经费的月平均增长率为x,
    则6月份投放科研经费1000(1+x)2=1000+500,
    故选A.
    【点睛】
    考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    7、D
    【解析】
    a·a2= a3.
    故选D.
    8、A
    【解析】

    (1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;
    (2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;
    (3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
    (4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
    综上所述,四种说法中正确的是③.
    故选A.
    9、A
    【解析】
    A. 是轴对称图形,是中心对称图形,故本选项正确;
    B. 是中心对称图,不是轴对称图形,故本选项错误;
    C. 不是中心对称图,是轴对称图形,故本选项错误;
    D. 不是轴对称图形,是中心对称图形,故本选项错误。
    故选A.
    10、B
    【解析】
    袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣2≤x<
    【解析】
    根据解不等式的步骤从而得到答案.
    【详解】

    解不等式①可得:x≥-2,
    解不等式②可得:x<,
    故答案为-2≤x<.
    【点睛】
    本题主要考查了解不等式,解本题的要点在于分别求解①,②不等式,从而得到答案.
    12、
    【解析】
    【分析】河北四库来水量为x亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.
    【详解】河北四库来水量为x亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,
    由题意得:x+(2x+1.82)=50,
    故答案为x+(2x+1.82)=50.
    【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.
    13、1.
    【解析】
    试题解析:连接OE,如下图所示,

    则:OE=OA=R,
    ∵AB是⊙O的直径,弦EF⊥AB,
    ∴ED=DF=4,
    ∵OD=OA-AD,
    ∴OD=R-2,
    在Rt△ODE中,由勾股定理可得:
    OE2=OD2+ED2,
    ∴R2=(R-2)2+42,
    ∴R=1.
    考点:1.垂径定理;2.解直角三角形.
    14、-5
    【解析】
    两边同时乘以(x+3)(x-3),得
    6-x2+9=-x2-3x,
    解得:x=-5,
    检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,
    故答案为:-5.
    【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.
    15、x≠2 x≥3
    【解析】
    根据分式的意义和二次根式的意义,分别求解.
    【详解】
    解:根据分式的意义得2-x≠0,解得x≠2;
    根据二次根式的意义得2x-6≥0,解得x≥3.
    故答案为: x≠2, x≥3.
    【点睛】
    数自变量的范围一般从几个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    16、1.2×10﹣1.
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:12纳米=12×0.000000001米=1.2×10−1米.
    故答案为1.2×10−1.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

    三、解答题(共8题,共72分)
    17、(1),;(1)2.
    【解析】
    试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
    (1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
    试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
    (1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
    考点:反比例函数与一次函数的交点问题.
    18、(1)当0<x≤1时,PD=1-x,当1<x≤14时,PD=x-1.
    (2)y=;(3)5≤x≤9
    【解析】
    (1)分点P在线段CD或在线段AD上两种情形分别求解即可.
    (2)分三种情形:①当5≤x≤1时,如图1中,根据y=S△DPB,求解即可.②当1<x≤9时,如图2中,根据y=S△DPB,求解即可.③9<x≤14时,如图3中,根据y=S△APQ+S△ABQ-S△PAB计算即可.
    (3)根据(2)中结论即可判断.
    【详解】
    解:(1)当0<x≤1时,PD=1-x,
    当1<x≤14时,PD=x-1.

    (2)①当5≤x≤1时,如图1中,

    ∵四边形ABCD是矩形,
    ∴OD=OB,
    ∴y=S△DPB=ו(1-x)•6=(1-x)=12-x.

    ②当1<x≤9时,如图2中,y=S△DPB=×(x-1)×1=2x-2.


    ③9<x≤14时,如图3中,y=S△APQ+S△ABQ-S△PAB=•(14-x)•(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.

    综上所述,y=.

    (3)由(2)可知:当5≤x≤9时,y=S△BDP.
    【点睛】
    本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
    19、(1)1;(2);(3)x时,y有最大值,最大值.
    【解析】
    (1)只要证明△OBC是等边三角形即可;
    (2)求出△AOC的面积,利用三角形的面积公式计算即可;
    (3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
    【详解】
    (1)由旋转性质可知:OB=OC,∠BOC=1°,
    ∴△OBC是等边三角形,
    ∴∠OBC=1°.
    故答案为1.
    (2)如图1中.

    ∵OB=4,∠ABO=30°,
    ∴OAOB=2,ABOA=2,
    ∴S△AOC•OA•AB2×2.
    ∵△BOC是等边三角形,
    ∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,
    ∴AC,
    ∴OP.
    (3)①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.

    则NE=ON•sin1°x,
    ∴S△OMN•OM•NE1.5xx,
    ∴yx2,
    ∴x时,y有最大值,最大值.
    ②当x≤4时,M在BC上运动,N在OB上运动.

    作MH⊥OB于H.
    则BM=8﹣1.5x,MH=BM•sin1°(8﹣1.5x),
    ∴yON×MHx2+2x.
    当x时,y取最大值,y,
    ③当4<x≤4.8时,M、N都在BC上运动,

    作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,
    ∴y•MN•OG=12x,
    当x=4时,y有最大值,最大值=2.
    综上所述:y有最大值,最大值为.
    【点睛】
    本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
    20、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.
    【解析】
    (1)∵,
    ∴,
    ∴a=m2+3n2,b=2mn.
    故答案为m2+3n2,2mn.
    (2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.
    故答案为1,2,1,2(答案不唯一).
    (3)由题意,得a=m2+3n2,b=2mn.
    ∵2=2mn,且m、n为正整数,
    ∴m=2,n=1或m=1,n=2,
    ∴a=22+3×12=7,或a=12+3×22=1.
    21、(1)详见解析;(2)详见解析;(3).
    【解析】
    (1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
    (2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
    (3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
    (1)证明:连接BD,
    在Rt△ABC中,∠ABC=90°,AB=BC,
    ∴∠A=∠C=45°,
    ∵AB为圆O的直径,
    ∴∠ADB=90°,即BD⊥AC,
    ∴AD=DC=BD=AC,∠CBD=∠C=45°,
    ∴∠A=∠FBD,
    ∵DF⊥DG,
    ∴∠FDG=90°,
    ∴∠FDB+∠BDG=90°,
    ∵∠EDA+∠BDG=90°,
    ∴∠EDA=∠FDB,
    在△AED和△BFD中,
    ∠A=∠FBD,AD=BD,∠EDA=∠FDB,
    ∴△AED≌△BFD(ASA),
    ∴AE=BF;
    (2)证明:连接EF,BG,

    ∵△AED≌△BFD,
    ∴DE=DF,
    ∵∠EDF=90°,
    ∴△EDF是等腰直角三角形,
    ∴∠DEF=45°,
    ∵∠G=∠A=45°,
    ∴∠G=∠DEF,
    ∴GB∥EF;
    (3)∵AE=BF,AE=1,
    ∴BF=1,
    在Rt△EBF中,∠EBF=90°,
    ∴根据勾股定理得:EF2=EB2+BF2,
    ∵EB=2,BF=1,
    ∴EF=,
    ∵△DEF为等腰直角三角形,∠EDF=90°,
    ∴cos∠DEF=,
    ∵EF=,
    ∴DE=×,
    ∵∠G=∠A,∠GEB=∠AED,
    ∴△GEB∽△AED,
    ∴,即GE•ED=AE•EB,
    ∴•GE=2,即GE=,
    则GD=GE+ED=.
    22、 (1);(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.
    【详解】
    解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
    故答案为:;
    (2)画树状图为:

    共有6种等可能的结果数,其中乙摸到白球的结果数为2,
    所以乙摸到白球的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    23、(1)证明见解析;(2)BC=2CD,理由见解析.
    【解析】
    分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
    (2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
    详解:(1)∵四边形ABCD是矩形,
    ∴AB∥CD,
    ∴∠FAE=∠CDE,
    ∵E是AD的中点,
    ∴AE=DE,
    又∵∠FEA=∠CED,
    ∴△FAE≌△CDE,
    ∴CD=FA,
    又∵CD∥AF,
    ∴四边形ACDF是平行四边形;
    (2)BC=2CD.
    证明:∵CF平分∠BCD,
    ∴∠DCE=45°,
    ∵∠CDE=90°,
    ∴△CDE是等腰直角三角形,
    ∴CD=DE,
    ∵E是AD的中点,
    ∴AD=2CD,
    ∵AD=BC,
    ∴BC=2CD.
    点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
    24、见解析
    【解析】
    根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AB=AD,∠ABC=∠D=∠BAD=90°,
    ∴∠ABF=90°.
    ∵在△BAF和△DAE中,

    ∴△BAF≌△DAE(SAS),
    ∴∠FAB=∠EAD,
    ∵∠EAD+∠BAE=90°,
    ∴∠FAB+∠BAE=90°,
    ∴∠FAE=90°,
    ∴EA⊥AF.

    相关试卷

    湖南省益阳市重点中学2022年中考数学猜题卷含解析: 这是一份湖南省益阳市重点中学2022年中考数学猜题卷含解析,共25页。试卷主要包含了已知,下列各数中是无理数的是等内容,欢迎下载使用。

    2022年温州市重点中学中考冲刺卷数学试题含解析: 这是一份2022年温州市重点中学中考冲刺卷数学试题含解析,共21页。试卷主要包含了花园甜瓜是乐陵的特色时令水果等内容,欢迎下载使用。

    2022届福建省各地重点中学中考冲刺卷数学试题含解析: 这是一份2022届福建省各地重点中学中考冲刺卷数学试题含解析,共21页。试卷主要包含了下列各式等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map