年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年福建省厦门重点中学中考冲刺卷数学试题含解析

    2022年福建省厦门重点中学中考冲刺卷数学试题含解析第1页
    2022年福建省厦门重点中学中考冲刺卷数学试题含解析第2页
    2022年福建省厦门重点中学中考冲刺卷数学试题含解析第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年福建省厦门重点中学中考冲刺卷数学试题含解析

    展开

    这是一份2022年福建省厦门重点中学中考冲刺卷数学试题含解析,共26页。试卷主要包含了如图,已知直线l1等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为(  )
    A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣10
    2.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为(  )
    A.1个 B.2个 C.3个 D.4个
    3.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于(  )

    A.30°10′ B.29°10′ C.29°50′ D.50°10′
    4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是(  )
    A.25和30 B.25和29 C.28和30 D.28和29
    5.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是(  )

    A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2
    6.在一张考卷上,小华写下如下结论,记正确的个数是m,错误的个数是n,你认为  
    有公共顶点且相等的两个角是对顶角
    若,则它们互余
    A.4 B. C. D.
    7.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是(  )

    A. B. C. D.
    8.小明解方程的过程如下,他的解答过程中从第(  )步开始出现错误.
    解:去分母,得1﹣(x﹣2)=1①
    去括号,得1﹣x+2=1②
    合并同类项,得﹣x+3=1③
    移项,得﹣x=﹣2④
    系数化为1,得x=2⑤
    A.① B.② C.③ D.④
    9.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为(  )

    A. B. C. D.1
    10.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为(  )
    A.485×105 B.48.5×106 C.4.85×107 D.0.485×108
    11.下列计算正确的是
    A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
    12.4的平方根是( )
    A.4 B.±4 C.±2 D.2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金两、两,依题意,可列出方程为___________________ .
    14.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为_____.

    15.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.

    16.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.
    17.若关于的一元二次方程有两个不相等的实数根,则的取值范围为__________.
    18.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程有一个根的平方等于4,求m的值.
    20.(6分)如图所示,内接于圆O,于D;
    (1)如图1,当AB为直径,求证:;
    (2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;
    (3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,,求CF的长度.

    21.(6分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
    (1)观察猜想
    图1中,线段PM与PN的数量关系是   ,位置关系是   ;
    (2)探究证明
    把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
    (3)拓展延伸
    把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

    22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴于D,若OB=1,OD=6,△AOB的面积为1.求一次函数与反比例函数的表达式;当x>0时,比较kx+b与的大小.

    23.(8分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:

    “祖冲之奖”的学生成绩统计表:
    分数/分
    80
    85
    90
    95
    人数/人
    4
    2
    10
    4
    根据图表中的信息,解答下列问题:
    (1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
    (2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
    (3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
    24.(10分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF、DF

    (1)求证:BF是⊙A的切线.(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.
    25.(10分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高   米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)

    26.(12分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.
    27.(12分)解下列不等式组:



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    本题根据科学记数法进行计算.
    【详解】
    因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,
    故选C.
    【点睛】
    本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.
    2、C
    【解析】
    ①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
    ②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
    ③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
    ④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
    【详解】
    :①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
    ∴-=1,
    ∴b=-2a,
    ∴4a+2b=0,结论①错误;

    ②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
    ∴a-b+c=3a+c=0,
    ∴a=-.
    又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
    ∴2≤c≤3,
    ∴-1≤a≤-,结论②正确;
    ③∵a<0,顶点坐标为(1,n),
    ∴n=a+b+c,且n≥ax2+bx+c,
    ∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
    ④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
    ∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
    又∵a<0,
    ∴抛物线开口向下,
    ∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
    ∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
    故选C.
    【点睛】
    本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
    3、C
    【解析】
    根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.
    【详解】
    ∵AB∥CD,
    ∴∠D=∠A=50°10′,
    ∵∠COD=100°,
    ∴∠C=180°-∠D-∠COD=29°50′.
    故选C.
    【点睛】
    本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°-∠D-∠COD.应该掌握的是三角形的内角和为180°.
    4、D
    【解析】
    【分析】根据中位数和众数的定义进行求解即可得答案.
    【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,
    处于最中间是数是28,
    ∴这组数据的中位数是28,
    在这组数据中,29出现的次数最多,
    ∴这组数据的众数是29,
    故选D.
    【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
    5、D
    【解析】
    解:∵直线l1与x轴的交点为A(﹣1,0),
    ∴﹣1k+b=0,∴,解得:.
    ∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,
    ∴,
    解得0<k<1.
    故选D.
    【点睛】
    两条直线相交或平行问题;一次函数图象上点的坐标特征.
    6、D
    【解析】
    首先判断出四个结论的错误个数和正确个数,进而可得m、n的值,再计算出即可.
    【详解】
    解:有公共顶点且相等的两个角是对顶角,错误;
    ,正确;
    ,错误;
    若,则它们互余,错误;
    则,,

    故选D.
    【点睛】
    此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m、n的值.
    7、C
    【解析】
    根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
    【详解】
    解:由题意可得,
    y==,
    当x=40时,y=6,
    故选C.
    【点睛】
    本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.
    8、A
    【解析】
    根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.
    【详解】
    =1,
    去分母,得1-(x-2)=x,故①错误,
    故选A.
    【点睛】
    本题考查解分式方程,解答本题的关键是明确解分式方程的方法.
    9、C
    【解析】
    延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
    【详解】
    解:延长BC′交AB′于D,连接BB',如图,

    在Rt△AC′B′中,AB′=AC′=2,
    ∵BC′垂直平分AB′,
    ∴C′D=AB=1,
    ∵BD为等边三角形△ABB′的高,
    ∴BD=AB′=,
    ∴BC′=BD-C′D=-1.
    故本题选择C.
    【点睛】
    熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.
    10、C
    【解析】
    依据科学记数法的含义即可判断.
    【详解】
    解:48511111=4.85×117,故本题选择C.
    【点睛】
    把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:
    (1)当|a|≥1时,n的值为a的整数位数减1;
    (2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.
    11、B
    【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
    【详解】A. a2·a2=a4 ,故A选项错误;
    B. (-a2)3=-a6 ,正确;
    C. 3a2-6a2=-3a2 ,故C选项错误;
    D. (a-2)2=a2-4a+4,故D选项错误,
    故选B.
    【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
    12、C
    【解析】
    根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.
    【详解】
    ∵(±1)1=4,
    ∴4的平方根是±1.
    故选D.
    【点睛】
    本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    【分析】牛、羊每头各值金两、两,根据等量关系:“牛5头,羊2头,共值金10两”,“牛2头,羊5头,共值金8两”列方程组即可.
    【详解】牛、羊每头各值金两、两,由题意得:

    故答案为:.
    【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是关键.
    14、1或9
    【解析】
    (1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示

    ∵OD=OA,
    ∴∠OAD=∠ODA,
    ∵AD平分∠BAE,
    ∴∠OAD=∠ODA=∠DAC,
    ∴OD//AE,
    ∵DE是圆的切线,
    ∴DE⊥OD,
    ∴∠ODE=∠E=90o,
    ∴四边形ODEF是矩形,
    ∴OF=DE,EF=OD=5,
    又∵OF⊥AC,
    ∴AF=,
    ∴AE=AF+EF=5+4=9.
    (2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示

    同(1)可得:EF=OD=5,OF=DE=3,
    在直角三角形AOF中,AF=,
    ∴AE=EF-AF=5-4=1.
    15、1.
    【解析】
    根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.
    【详解】
    ∵双曲线y=与正比例函数y=kx的图象交于A,B两点,
    ∴点A与点B关于原点对称,∴S△BOC=S△AOC,
    ∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.
    故答案为1.
    16、x(x﹣1)=1
    【解析】
    【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.
    【详解】有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:
    x(x﹣1)=1,
    故答案为x(x﹣1)=1.
    【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    17、.
    【解析】
    根据判别式的意义得到,然后解不等式即可.
    【详解】
    解:关于的一元二次方程有两个不相等的实数根,

    解得:,
    故答案为:.
    【点睛】
    此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
    18、
    【解析】
    连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题
    【详解】
    解:连接CD,
    ∵DE垂直平分AC,
    ∴AD=CD,
    ∴∠DCA=∠BAC=45°,
    ∴△ADC是等腰直角三角形,
    ∴,∠ADC=90°,
    ∴∠BDC=90°,
    ∵∠ACB=75°,
    ∴∠BCD=30°,
    ∴BC= ,
    故答案为.

    【点睛】
    此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)m 的值为1或﹣2.
    【解析】
    (1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.
    【详解】
    (1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,
    ∴无论实数 m 取何值,方程总有两个实数根;
    (2)解:∵方程有一个根的平方等于 2,
    ∴x=±2 是原方程的根,
    当 x=2 时,2﹣2(m+3)+m+2=1.
    解得m=1;
    当 x=﹣2 时,2+2(m+3)+m+2=1,
    解得m=﹣2.
    综上所述,m 的值为 1 或﹣2.
    【点睛】
    本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.
    20、(1)见解析;(2)成立;(3)
    【解析】
    (1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;
    (2)根据圆周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;
    (3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交⊙O于N,连接CN、AN,求出关于a的方程,再求出a即可.
    【详解】
    (1)证明:∵AB为直径,
    ∴,
    ∵于D,
    ∴,
    ∴,,
    ∴;
    (2)成立,
    证明:连接OC,

    由圆周角定理得:,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴;
    (3)分别延长AE、CD交⊙O于H、K,连接HK、CH、AK,

    ∵,,
    ∴,
    ∴,,
    ∵,
    ∴,
    ∵根据圆周角定理得:,
    ∴,
    ∴由三角形内角和定理得:,
    ∴,
    ∴,
    同理,
    ∵,
    ∴,
    在AD上取,延长CG交AK于M,则,

    ∴,
    ∴,
    延长KO交⊙O于N,连接CN、AN,
    则,
    ∴,
    ∵,
    ∴,
    ∴四边形CGAN是平行四边形,
    ∴,
    作于T,
    则T为CK的中点,
    ∵O为KN的中点,
    ∴,
    ∵,,
    ∴由勾股定理得:,
    ∴,
    作直径HS,连接KS,
    ∵,,
    ∴由勾股定理得:,
    ∴,
    ∴,
    设,,
    ∴,,
    ∵,
    ∴,
    解得:,
    ∴,
    ∴.
    【点睛】
    本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.
    21、 (1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3).
    【解析】
    (1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
    (2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
    (3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
    方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
    【详解】
    解:(1)∵点P,N是BC,CD的中点,
    ∴PN∥BD,PN=BD,
    ∵点P,M是CD,DE的中点,
    ∴PM∥CE,PM=CE,
    ∵AB=AC,AD=AE,
    ∴BD=CE,
    ∴PM=PN,
    ∵PN∥BD,
    ∴∠DPN=∠ADC,
    ∵PM∥CE,
    ∴∠DPM=∠DCA,
    ∵∠BAC=90°,
    ∴∠ADC+∠ACD=90°,
    ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
    ∴PM⊥PN,
    故答案为:PM=PN,PM⊥PN,
    (2)由旋转知,∠BAD=∠CAE,
    ∵AB=AC,AD=AE,
    ∴△ABD≌△ACE(SAS),
    ∴∠ABD=∠ACE,BD=CE,
    同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形,
    同(1)的方法得,PM∥CE,
    ∴∠DPM=∠DCE,
    同(1)的方法得,PN∥BD,
    ∴∠PNC=∠DBC,
    ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
    ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
    =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
    =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
    ∵∠BAC=90°,
    ∴∠ACB+∠ABC=90°,
    ∴∠MPN=90°,
    ∴△PMN是等腰直角三角形,
    (3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
    ∴MN最大时,△PMN的面积最大,
    ∴DE∥BC且DE在顶点A上面,
    ∴MN最大=AM+AN,
    连接AM,AN,
    在△ADE中,AD=AE=4,∠DAE=90°,
    ∴AM=2,
    在Rt△ABC中,AB=AC=10,AN=5,
    ∴MN最大=2+5=7,
    ∴S△PMN最大=PM2=×MN2=×(7)2=.
    方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
    ∴PM最大时,△PMN面积最大,
    ∴点D在BA的延长线上,
    ∴BD=AB+AD=14,
    ∴PM=7,
    ∴S△PMN最大=PM2=×72=

    【点睛】
    本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.
    22、 (1) ,;(2) 当0<x<6时,kx+b<,当x>6时,kx+b>
    【解析】
    (1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2)
    ,利用待定系数法求解即可求出解析式
    (2)由C(6,2)分析图形可知,当0<x<6时,kx+b<,当x>6时,kx+b>
    【详解】
    (1)S△AOB= OA•OB=1,
    ∴OA=2,
    ∴点A的坐标是(0,﹣2),
    ∵B(1,0)


    ∴y=x﹣2.
    当x=6时,y= ×6﹣2=2,∴C(6,2)
    ∴m=2×6=3.
    ∴y=.
    (2)由C(6,2),观察图象可知:
    当0<x<6时,kx+b<,当x>6时,kx+b>.
    【点睛】
    此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标
    23、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
    【解析】
    (1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
    (2)根据中位数和众数的定义求解可得;
    (3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
    【详解】
    (1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:

    故答案为40;
    (2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
    故答案为90、90;
    (3)列表法:

    ∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
    【点睛】
    本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
    24、(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE为菱形;证明见解析;
    【解析】
    分析(1)首先利用平行线的性质得到∠FAB=∠CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;
    (2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.
    详解:(1)证明:∵EF∥AB
    ∴∠FAB=∠EFA,∠CAB=∠E
    ∵AE=AF
    ∴∠EFA =∠E
    ∴∠FAB=∠CAB
    ∵AC=AF,AB=AB
    ∴△ABC≌△ABF
    ∴∠AFB=∠ACB=90°, ∴BF是⊙A的切线.
    (2)当∠CAB=60°时,四边形ADFE为菱形.
    理由:∵EF∥AB
    ∴∠E=∠CAB=60°
    ∵AE=AF
    ∴△AEF是等边三角形
    ∴AE=EF,
    ∵AE=AD
    ∴EF=AD
    ∴四边形ADFE是平行四边形
    ∵AE=EF
    ∴平行四边形ADFE为菱形.
    点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大.
    25、2.1.
    【解析】
    据题意得出tanB = , 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.
    【详解】
    解:
    据题意得tanB=,
    ∵MN∥AD,
    ∴∠A=∠B,
    ∴tanA=,
    ∵DE⊥AD,
    ∴在Rt△ADE中,tanA=,
    ∵AD=9,
    ∴DE=1,
    又∵DC=0.5,
    ∴CE=2.5,
    ∵CF⊥AB,
    ∴∠FCE+∠CEF=90°,
    ∵DE⊥AD,
    ∴∠A+∠CEF=90°,
    ∴∠A=∠FCE,
    ∴tan∠FCE=
    在Rt△CEF中,CE2=EF2+CF2
    设EF=x,CF=1x(x>0),CE=2.5,
    代入得()2=x2+(1x)2
    解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),
    ∴CF=1x=≈2.1,
    ∴该停车库限高2.1米.
    【点睛】
    点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.
    26、 (1)列表见解析;(2)这个游戏规则对双方不公平.
    【解析】
    (1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;
    (2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.
    【详解】
    (1)列表如下:

    由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;
    (2)这个游戏规则对双方不公平.理由如下:
    因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的.
    【点睛】
    本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.
    27、﹣2≤x<.
    【解析】
    先分别求出两个不等式的解集,再求其公共解.
    【详解】

    解不等式①得,x<,
    解不等式②得,x≥﹣2,
    则不等式组的解集是﹣2≤x<.
    【点睛】
    本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).

    相关试卷

    福建厦门华侨中学2022年中考冲刺卷数学试题含解析:

    这是一份福建厦门华侨中学2022年中考冲刺卷数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,y=,的化简结果为,已知方程组,那么x+y的值等内容,欢迎下载使用。

    2022年福建省厦门重点中学毕业升学考试模拟卷数学卷含解析:

    这是一份2022年福建省厦门重点中学毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了答题时请按要求用笔,在同一平面内,下列说法,下列图标中,是中心对称图形的是等内容,欢迎下载使用。

    2022届福建省各地重点中学中考冲刺卷数学试题含解析:

    这是一份2022届福建省各地重点中学中考冲刺卷数学试题含解析,共21页。试卷主要包含了下列各式等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map