|试卷下载
搜索
    上传资料 赚现金
    2022年河北省石家庄市重点中学中考数学四模试卷含解析
    立即下载
    加入资料篮
    2022年河北省石家庄市重点中学中考数学四模试卷含解析01
    2022年河北省石家庄市重点中学中考数学四模试卷含解析02
    2022年河北省石家庄市重点中学中考数学四模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年河北省石家庄市重点中学中考数学四模试卷含解析

    展开
    这是一份2022年河北省石家庄市重点中学中考数学四模试卷含解析,共23页。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为(  )
    A.1.21×103 B.12.1×103 C.1.21×104 D.0.121×105
    2.在函数y=中,自变量x的取值范围是(  )
    A.x≥0 B.x≤0 C.x=0 D.任意实数
    3.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )

    A. B. C. D.
    4.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程(  )
    A. B.
    C. +4=9 D.
    5.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )

    A.垂线段最短 B.经过一点有无数条直线
    C.两点之间,线段最短 D.经过两点,有且仅有一条直线
    6.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为π cm2,则扇形圆心角的度数为(  )

    A.120° B.140° C.150° D.160°
    7.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
    C.线段EF的长不变 D.线段EF的长不能确定
    8.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是(  )

    A. B. C. D.
    9.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是(  )

    A.50° B.60° C.70° D.80°
    10.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
    A.方差 B.中位数 C.众数 D.平均数
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了______结果保留根号.

    12.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)

    13.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.

    14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=,则CD=_____.

    15.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为 .

    16.如图,在直角三角形ABC中,∠ACB=90°,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_____.

    17.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.

    19.(5分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论①:“E是BC中点” .乙得到结论②:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.

    20.(8分)如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
    (1)求n的值和抛物线的解析式;
    (2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
    (3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

    21.(10分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.

    22.(10分)如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.

    23.(12分) “校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
    (1)求这次调查的家长人数,并补全图1;
    (2)求图2中表示家长“赞成”的圆心角的度数;
    (3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?

    24.(14分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.
    (1)求二次函数的表达式;
    (2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.
    ①求平移后图象顶点E的坐标;
    ②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:1.21万=1.21×104,
    故选:C.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、C
    【解析】
    当函数表达式是二次根式时,被开方数为非负数.据此可得.
    【详解】
    解:根据题意知 ,
    解得:x=0,
    故选:C.
    【点睛】
    本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.
    3、A
    【解析】
    对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.
    【详解】
    解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.
    【点睛】
    本题考查了三视图的概念.
    4、A
    【解析】
    根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.
    【详解】
    ∵轮船在静水中的速度为x千米/时,
    ∴顺流航行时间为:,逆流航行时间为:,
    ∴可得出方程:,
    故选:A.
    【点睛】
    本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.
    5、C
    【解析】
    用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
    ∴线段AB的长小于点A绕点C到B的长度,
    ∴能正确解释这一现象的数学知识是两点之间,线段最短,
    故选C.
    【点睛】
    根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
    6、C
    【解析】
    根据扇形的面积公式列方程即可得到结论.
    【详解】
    ∵OB=10cm,AB=20cm,
    ∴OA=OB+AB=30cm,
    设扇形圆心角的度数为α,
    ∵纸面面积为π cm2,
    ∴,
    ∴α=150°,
    故选:C.
    【点睛】
    本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .
    7、C
    【解析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
    【详解】
    如图,连接AR,

    ∵E、F分别是AP、RP的中点,
    ∴EF为△APR的中位线,
    ∴EF= AR,为定值.
    ∴线段EF的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    8、B
    【解析】
    俯视图是从上面看几何体得到的图形,据此进行判断即可.
    【详解】
    由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得
    拿掉第一排的小正方形,
    拿掉这个小立方体木块之后的几何体的俯视图是,
    故选B.
    【点睛】
    本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.
    9、B
    【解析】
    试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.
    由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.
    考点:旋转的性质.
    10、A
    【解析】
    试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.
    故选A.
    考点:1、计算器-平均数,2、中位数,3、众数,4、方差

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据题意画出图形,进而利用锐角三角函数关系得出答案.
    【详解】
    解:如图1所示:
    过点A作于点D,
    由题意可得:,
    则是等边三角形,
    故BC,
    则,

    如图2所示:
    过点A作于点E,
    由题意可得:,
    则是等腰直角三角形,,
    则,
    故梯子顶端离地面的高度AD下降了
    故答案为:.
    【点睛】
    此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键.
    12、2.9
    【解析】
    试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.
    考点:解直角三角形.
    13、或
    【解析】
    试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.

    考点:翻折变换(折叠问题).
    14、
    【解析】
    延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.
    【详解】
    如图,延长AD、BC相交于点E,

    ∵∠B=90°,
    ∴,
    ∴BE=,
    ∴CE=BE-BC=2,AE=,
    ∴,
    又∵∠CDE=∠CDA=90°,
    ∴在Rt△CDE中,,
    ∴CD=.
    15、1.
    【解析】
    试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,
    则AD=1,BF=BC+CF=BC+1,DF=AC,
    又∵AB+BC+AC=1,
    ∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
    考点:平移的性质.
    16、4
    【解析】
    连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍.
    【详解】
    解:连接OP、OB,

    ∵图形BAP的面积=△AOB的面积+△BOP的面积+扇形OAP的面积,
    图形BCP的面积=△BOC的面积+扇形OCP的面积−△BOP的面积,
    又∵点P是半圆弧AC的中点,OA=OC,
    ∴扇形OAP的面积=扇形OCP的面积,△AOB的面积=△BOC的面积,
    ∴两部分面积之差的绝对值是
    点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.
    17、y=x+1
    【解析】
    已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.
    【详解】
    ∵直线 y=x 沿y轴向上平移1个单位长度,
    ∴所得直线的函数关系式为:y=x+1.
    ∴A(0,1),B(1,0),
    ∴AB=1,
    过点 O 作 OF⊥AB 于点 F,

    则AB•OF=OA•OB,
    ∴OF=,
    即这两条直线间的距离为.
    故答案为y=x+1,.
    【点睛】
    本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时 k 不变,当向上平移m个单位,则平移后直线的解析式为 y=kx+b+m.

    三、解答题(共7小题,满分69分)
    18、木竿PQ的长度为3.35米.
    【解析】
    过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
    试题解析:
    【详解】
    解:过N点作ND⊥PQ于D,

    则四边形DPMN为矩形,
    ∴DN=PM=1.8m,DP=MN=1.1m,
    ∴,
    ∴QD==2.25,
    ∴PQ=QD+DP= 2.25+1.1=3.35(m).
    答:木竿PQ的长度为3.35米.
    【点睛】
    本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
    19、①结论一正确,理由见解析;②结论二正确,S四QEFP= S
    【解析】
    试题分析:
    (1)由已知条件易得△BEQ∽△DAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论①成立;
    (2)同(1)易证点F是CD的中点,由此可得EF∥BD,EF=BD,从而可得△CEF∽△CBD,则可得得到S△CEF=S△CBD=S平行四边形ABCD=S,结合S四边形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四边形QEFP= S△AEF- S△AQP=S,从而说明乙的结论②正确;
    试题解析:
    甲和乙的结论都成立,理由如下:
    (1)∵在平行四边形ABCD中,AD∥BC,
    ∴△BEQ∽△DAQ,
    又∵点P、Q是线段BD的三等分点,
    ∴BE:AD=BQ:DQ=1:2,
    ∵AD=BC,
    ∴BE:BC=1:2,
    ∴点E是BC的中点,即结论①正确;
    (2)和(1)同理可得点F是CD的中点,
    ∴EF∥BD,EF=BD,
    ∴△CEF∽△CBD,
    ∴S△CEF=S△CBD=S平行四边形ABCD=S,
    ∵S四边形AECF=S△ACE+S△ACF=S平行四边形ABCD=S,
    ∴S△AEF=S四边形AECF-S△CEF=S,
    ∵EF∥BD,
    ∴△AQP∽△AEF,
    又∵EF=BD,PQ=BD,
    ∴QP:EF=2:3,
    ∴S△AQP=S△AEF=,
    ∴S四边形QEFP= S△AEF- S△AQP=S-=S,即结论②正确.
    综上所述,甲、乙两位同学的结论都正确.
    20、(1)n=2;y=x2﹣x﹣1;(2)p=;当t=2时,p有最大值;(3)6个,或;
    【解析】
    (1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;
    (2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;
    (3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,根据图3、图4两种情形即可解决.
    【详解】
    解:
    (1)∵直线l:y=x+m经过点B(0,﹣1),
    ∴m=﹣1,
    ∴直线l的解析式为y=x﹣1,
    ∵直线l:y=x﹣1经过点C(4,n),
    ∴n=×4﹣1=2,
    ∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),
    ∴,
    解得,
    ∴抛物线的解析式为y=x2﹣x﹣1;
    (2)令y=0,则x﹣1=0,
    解得x=,
    ∴点A的坐标为(,0),
    ∴OA=,
    在Rt△OAB中,OB=1,
    ∴AB===,
    ∵DE∥y轴,
    ∴∠ABO=∠DEF,
    在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,
    DF=DE•sin∠DEF=DE•=DE,
    ∴p=2(DF+EF)=2(+)DE=DE,
    ∵点D的横坐标为t(0<t<4),
    ∴D(t, t2﹣t﹣1),E(t, t﹣1),
    ∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,
    ∴p=×(﹣t2+2t)=﹣t2+t,
    ∵p=﹣(t﹣2)2+,且﹣<0,
    ∴当t=2时,p有最大值.
    (3)“落点”的个数有6个,如图1,图2中各有2个,图3,图4各有一个所示.

    如图3中,设A1的横坐标为m,则O1的横坐标为m+,
    ∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,
    解得m=,
    如图4中,设A1的横坐标为m,则B1的横坐标为m+,B1的纵坐标比例A1的纵坐标大1,
    ∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,
    解得m=,
    ∴旋转180°时点A1的横坐标为或
    【点睛】
    本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,解题时注意要分情况讨论.
    21、 “石鼓阁”的高AB的长度为56m.
    【解析】
    根据题意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根据反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,根据相似三角形的性质可得=,再根据∠AHB=∠GHF,可证△ABH∽△GFH,同理得=,代入数值计算即可得出结论.
    【详解】
    由题意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,
    由反射定律可知:∠ACB=∠ECD,
    则△ABC∽△EDC,
    ∴=,
    即=①,
    ∵∠AHB=∠GHF,
    ∴△ABH∽△GFH,
    ∴=,即=②,
    联立①②,解得:AB=56,
    答:“石鼓阁”的高AB的长度为56m.
    【点睛】
    本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
    22、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.
    【解析】
    (1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
    (2)利用勾股定理结合扇形面积求法分别分析得出答案.
    【详解】
    (1)DE与⊙O相切,
    理由:连接DO,

    ∵DO=BO,
    ∴∠ODB=∠OBD,
    ∵∠ABC的平分线交⊙O于点D,
    ∴∠EBD=∠DBO,
    ∴∠EBD=∠BDO,
    ∴DO∥BE,
    ∵DE⊥BC,
    ∴∠DEB=∠EDO=90°,
    ∴DE与⊙O相切;
    (2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
    ∴DE=DF=3,
    ∵BE=3,
    ∴BD==6,
    ∵sin∠DBF=,
    ∴∠DBA=30°,
    ∴∠DOF=60°,
    ∴sin60°=,
    ∴DO=2,
    则FO=,
    故图中阴影部分的面积为:.
    【点睛】
    此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.
    23、(1)答案见解析(2)36°(3)4550名
    【解析】
    试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;
    (2)利用360乘以对应的比例即可求解;
    (3)利用总人数6500乘以对应的比例即可求解.
    (1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人,

    (2)360×=36°;
    (3)反对中学生带手机的大约有6500×=4550(名).
    考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.
    24、(1)y=﹣x2+4;(2)①E(5,9);②1.
    【解析】
    (1)待定系数法即可解题,
    (2)①求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;②AB扫过的面积是平行四边形ABGE,根据S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.
    【详解】
    解:(1)∵A(0,4),B(2,0),C(﹣2,0)
    ∴二次函数的图象的顶点为A(0,4),
    ∴设二次函数表达式为y=ax2+4,
    将B(2,0)代入,得4a+4=0,
    解得,a=﹣1,
    ∴二次函数表达式y=﹣x2+4;
    (2)①设直线DA:y=kx+b(k≠0),
    将A(0,4),D(﹣4,0)代入,得 ,
    解得, ,
    ∴直线DA:y=x+4,
    由题意可知,平移后的抛物线的顶点E在直线DA上,
    ∴设顶点E(m,m+4),
    ∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,
    又∵平移后的抛物线过点B(2,0),
    ∴将其代入得,﹣(2﹣m)2+m+4=0,
    解得,m1=5,m2=0(不合题意,舍去),
    ∴顶点E(5,9),
    ②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,

    ∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,
    过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.
    由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.
    ∵B(2,0),∴点G(7,5),
    ∴GK=5,OB=2,OK=7,
    ∴BK=OK﹣OB=7﹣2=5,
    ∵A(0,4),E(5,9),
    ∴AI=9﹣4=5,EI=5,
    ∴EH=7﹣5=2,HG=9﹣5=4,
    ∴S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK
    =7×9﹣×2×4﹣×5×5﹣×2×4﹣×5×5
    =63﹣8﹣25
    =1
    答:图象A,B两点间的部分扫过的面积为1.
    【点睛】
    本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.

    相关试卷

    2023年河北省张家口市、保定市、石家庄市中考数学四模试卷(含解析): 这是一份2023年河北省张家口市、保定市、石家庄市中考数学四模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年河北省石家庄市中考数学一模试卷(含解析): 这是一份2023年河北省石家庄市中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年河北省石家庄市十八县部分重点中学中考数学模拟试卷(二)(含解析): 这是一份2023年河北省石家庄市十八县部分重点中学中考数学模拟试卷(二)(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map