2022年贵州省铜仁市石阡县中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.把8a3﹣8a2+2a进行因式分解,结果正确的是( )
A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)2
2.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是( )
A.120° B.135° C.150° D.165°
3.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )
A.70° B.60° C.55° D.50°
4.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( ).
A. B. C. D.
5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为( )
A.30° B.45° C.60° D.75°
6.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )
A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
7.下列交通标志是中心对称图形的为( )
A. B. C. D.
8.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是( )
A.160元 B.180元 C.200元 D.220元
9.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是( )
A.5 B.4 C.3 D.2
10.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分解因式8x2y﹣2y=_____.
12.如图,等边△ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作EF∥BC,交AB、CD于点E、F,则EF的长度为_____.
13.如图,已知正八边形ABCDEFGH内部△ABE的面积为6cm1,则正八边形ABCDEFGH面积为_____cm1.
14.已知一组数据:3,3,4,5,5,则它的方差为____________
15.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).
16.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.
三、解答题(共8题,共72分)
17.(8分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:
本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?
18.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.
19.(8分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
20.(8分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.
21.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.
22.(10分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.
(1)求证:∠F=∠B;
(2)若AB=12,BG=10,求AF的长.
23.(12分)(2017四川省内江市)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:
(1)这项被调查的总人数是多少人?
(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;
(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
24. “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
首先提取公因式2a,进而利用完全平方公式分解因式即可.
【详解】
解:8a3﹣8a2+2a
=2a(4a2﹣4a+1)
=2a(2a﹣1)2,故选C.
【点睛】
本题因式分解中提公因式法与公式法的综合运用.
2、C
【解析】
这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.
【详解】
解:设这个扇形的圆心角的度数为n°,
根据题意得20π=,
解得n=150,
即这个扇形的圆心角为150°.
故选C.
【点睛】
本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).
3、A
【解析】
试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.
考点:平行线的性质.
4、B
【解析】
先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.
【详解】
由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.
【点睛】
本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.
5、C
【解析】
试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.
考点:1矩形;2平行线的性质.
6、D
【解析】
直接利用配方法将原式变形,进而利用平移规律得出答案.
【详解】
y=x2﹣6x+21
=(x2﹣12x)+21
=[(x﹣6)2﹣16]+21
=(x﹣6)2+1,
故y=(x﹣6)2+1,向左平移2个单位后,
得到新抛物线的解析式为:y=(x﹣4)2+1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.
7、C
【解析】
根据中心对称图形的定义即可解答.
【详解】
解:A、属于轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称的图形,但不是交通标志,不符合题意;
C、属于轴对称图形,属于中心对称的图形,符合题意;
D、不是中心对称的图形,不合题意.
故选C.
【点睛】
本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.
8、C
【解析】
利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.
【详解】
解:设原价为x元,根据题意可得:
80%x=140+20,
解得:x=1.
所以该商品的原价为1元;
故选:C.
【点睛】
此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.
9、D
【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
【详解】
不等式组整理得:,
由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
即-2<a≤4,即a=-1,0,1,2,3,4,
分式方程去分母得:5-y+3y-3=a,即y=,
由分式方程有整数解,得到a=0,2,共2个,
故选:D.
【点睛】
本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
10、C
【解析】
由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.
【详解】
第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.
【点睛】
本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2y(2x+1)(2x﹣1)
【解析】
首先提取公因式2y,再利用平方差公式分解因式得出答案.
【详解】
8x2y-2y=2y(4x2-1)
=2y(2x+1)(2x-1).
故答案为2y(2x+1)(2x-1).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
12、4
【解析】
试题分析:根据BD和CD分别平分∠ABC和∠ACB,和EF∥BC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC.然后即可得出答案.
解:∵在△ABC中,BD和CD分别平分∠ABC和∠ACB,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∵EF∥BC,
∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,
∴BE=DE,DF=EC,
∵EF=DE+DF,
∴EF=EB+CF=2BE,
∵等边△ABC的边长为6,
∵EF∥BC,
∴△ADE是等边三角形,
∴EF=AE=2BE,
∴EF==,
故答案为4
考点:等边三角形的判定与性质;平行线的性质.
13、14
【解析】
取AE中点I,连接IB,则正八边形ABCDEFGH是由8个与△IDE全等的三角形构成.
【详解】
解:取AE中点I,连接IB.则正八边形ABCDEFGH是由8个与△IAB全等的三角形构成.
∵I是AE的中点,
∴ == =3,
则圆内接正八边形ABCDEFGH的面积为:8×3=14cm1.
故答案为14.
【点睛】
本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形.
14、
【解析】
根据题意先求出这组数据的平均数是:(3+3+4+5+5)÷5=4,再根据方差公式求出这组数据的方差为:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.
故答案为.
15、
【解析】
考点:弧长的计算;正多边形和圆.
分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.
解:方法一:
先求出正六边形的每一个内角==120°,
所得到的三条弧的长度之和=3×=2πcm;
方法二:先求出正六边形的每一个外角为60°,
得正六边形的每一个内角120°,
每条弧的度数为120°,
三条弧可拼成一整圆,其三条弧的长度之和为2πcm.
16、1.738×1
【解析】
解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.
【点睛】
本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.
三、解答题(共8题,共72分)
17、(1)200,90 (2)图形见解析(3)750人
【解析】
试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.
试题解析:
(1)20÷10%=200,
200×(1-45%-10%)=90 ;
(2)90-25-10-5=50,
补全条形统计图
(3)=750(人)
答: 每天的骑行路程在2~4千米的大约750人
18、50°.
【解析】
试题分析:由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.
解:∵AB∥CD,
∴∠ABC=∠1=65°,
∵BC平分∠ABD,
∴∠ABD=2∠ABC=130°,
∴∠BDE=180°﹣∠ABD=50°,
∴∠2=∠BDE=50°.
【点评】
本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.
19、(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).
【解析】
(1)利用待定系数法进行求解即可得;
(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;
(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.
【详解】
(1)∵抛物线过点B(6,0)、C(﹣2,0),
∴设抛物线解析式为y=a(x﹣6)(x+2),
将点A(0,6)代入,得:﹣12a=6,
解得:a=﹣,
所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;
(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,
设直线AB解析式为y=kx+b,
将点A(0,6)、B(6,0)代入,得:
,
解得:,
则直线AB解析式为y=﹣x+6,
设P(t,﹣t2+2t+6)其中0<t<6,
则N(t,﹣t+6),
∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,
∴S△PAB=S△PAN+S△PBN
=PN•AG+PN•BM
=PN•(AG+BM)
=PN•OB
=×(﹣t2+3t)×6
=﹣t2+9t
=﹣(t﹣3)2+,
∴当t=3时,△PAB的面积有最大值;
(3)△PDE为等腰直角三角形,
则PE=PD,
点P(m,-m2+2m+6),
函数的对称轴为:x=2,则点E的横坐标为:4-m,
则PE=|2m-4|,
即-m2+2m+6+m-6=|2m-4|,
解得:m=4或-2或5+或5-(舍去-2和5+)
故点P的坐标为:(4,6)或(5-,3-5).
【点睛】
本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.
20、(1)证明见解析(2)3
【解析】
试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
试题解析:(1)∵四边形ABCD是平行四边形,
∴DC∥AB,即DF∥EB.
又∵DF=BE,
∴四边形DEBF是平行四边形.
∵DE⊥AB,
∴∠EDB=90°.
∴四边形DEBF是矩形.
(2)∵四边形DEBF是矩形,
∴DE=BF=4,BD=DF.
∵DE⊥AB,
∴AD===1.
∵DC∥AB,
∴∠DFA=∠FAB.
∵AF平分∠DAB,
∴∠DAF=∠FAB.
∴∠DAF=∠DFA.
∴DF=AD=1.
∴BE=1.
∴AB=AE+BE=3+1=2.
∴S□ABCD=AB·BF=2×4=3.
21、(1);(2).
【解析】
【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;
(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.
【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,
所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,
∴转动转盘一次,求转出的数字是-2的概率为=;
(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:
第一次 第二次
1
-2
3
1
(1,1)
(1,-2)
(1,3)
-2
(-2,1)
(-2,-2)
(-2,3)
3
(3,1)
(3,-2)
(3,3)
由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.
【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
22、(1)见解析;(2).
【解析】
(1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;
(2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.
【详解】
(1)证明:∵,
∴.
∴∠GAB=∠B,
∵AF是⊙O的切线,
∴AF⊥AO.
∴∠GAB+∠GAF=90°.
∵OE⊥AC,
∴∠F+∠GAF=90°.
∴∠F=∠GAB,
∴∠F=∠B;
(2)解:连接OG.
∵∠GAB=∠B,
∴AG=BG.
∵OA=OB=6,
∴OG⊥AB.
∴,
∵∠FAO=∠BOG=90°,∠F=∠B,
∴△FAO∽△BOG,
∴.
∴.
【点睛】
本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
23、(1)50;(2)108°;(3).
【解析】
分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.
点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
24、(1)117(2)见解析(3)B(4)30
【解析】
(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;
(2)根据以上所求结果即可补全图形;
(3)根据中位数的定义求解可得;
(4)总人数乘以样本中A等级人数所占比例可得.
【详解】
解:(1)∵总人数为18÷45%=40人,
∴C等级人数为40﹣(4+18+5)=13人,
则C对应的扇形的圆心角是360°×=117°,
故答案为117;
(2)补全条形图如下:
(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,
所以所抽取学生的足球运球测试成绩的中位数会落在B等级,
故答案为B.
(4)估计足球运球测试成绩达到A级的学生有300×=30人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2024年贵州省铜仁市石阡县中考数学质检试卷(3月份)(含详细答案解析): 这是一份2024年贵州省铜仁市石阡县中考数学质检试卷(3月份)(含详细答案解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年贵州省铜仁市石阡县中考数学质检试卷(3月份)(含解析): 这是一份2024年贵州省铜仁市石阡县中考数学质检试卷(3月份)(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年贵州省铜仁市石阡县中考数学质检试卷(3月份)(含解析): 这是一份2024年贵州省铜仁市石阡县中考数学质检试卷(3月份)(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。