2022届山西省晋中学市榆次区中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图所示图形中,不是正方体的展开图的是( )
A. B.
C. D.
2.已知x2+mx+25是完全平方式,则m的值为( )
A.10 B.±10 C.20 D.±20
3.下列命题是假命题的是( )
A.有一个外角是120°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
4.下列标志中,可以看作是轴对称图形的是( )
A. B. C. D.
5.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()
A. B. C. D.
6.若,代数式的值是
A.0 B. C.2 D.
7.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为( )
A.8×107 B.880×108 C.8.8×109 D.8.8×1010
8.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )
A.50,50 B.50,30 C.80,50 D.30,50
9.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
A. B. C. D.
10.分式方程=1的解为( )
A.x=1 B.x=0 C.x=﹣ D.x=﹣1
11.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为( )
A.1个 B.2个 C.3个 D.4个
12.3的倒数是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.关于的一元二次方程有两个相等的实数根,则________.
14.已知:正方形 ABCD.
求作:正方形 ABCD 的外接圆.
作法:如图,
(1)分别连接 AC,BD,交于点 O;
(2)以点 O 为圆心,OA 长为半径作⊙O,⊙O 即为所求作的圆.
请回答:该作图的依据是__________________________________.
15.我们知道方程组的解是,现给出另一个方程组,它的解是____.
16.分解因:=______________________.
17.若一个多边形的每一个外角都等于 40°,则这个多边形的内角和是_____.
18.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
20.(6分)(操作发现)
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
①∠EAF的度数;
②线段AE,ED,DB之间的数量关系.
21.(6分)如图,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求证:AC=AE+BC.
22.(8分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.
23.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.
求证:BF=AG.
24.(10分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.
25.(10分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
(1)求抛物线的解析式;
(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
26.(12分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
27.(12分)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):
(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.
(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论: .(写一条即可)
(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为 公里.(直接写出结果,精确到个位)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.
【详解】
解:A、B、D都是正方体的展开图,故选项错误;
C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.
故选C.
【点睛】
此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题
2、B
【解析】
根据完全平方式的特点求解:a2±2ab+b2.
【详解】
∵x2+mx+25是完全平方式,
∴m=±10,
故选B.
【点睛】
本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
3、C
【解析】
解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
B. 等边三角形有3条对称轴,故B选项正确;
C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
D.利用SSS.可以判定三角形全等.故D选项正确;
故选C.
4、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、不是轴对称图形,是中心对称图形,不符合题意;
D、是轴对称图形,符合题意.
故选D.
【点睛】
本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.
5、B
【解析】
y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;
y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;
y=−的图象在二、四象限,故选项C错误;
y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;
故选B.
6、D
【解析】
由可得,整体代入到原式即可得出答案.
【详解】
解:,
,
则原式.
故选:D.
【点睛】
本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.
7、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
880亿=880 0000 0000=8.8×1010,
故选D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、A
【解析】
分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.
详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).
故选A.
点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
9、D
【解析】
【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
【详解】由二次函数的图象可知,
,,
当时,,
的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
10、C
【解析】
首先找出分式的最简公分母,进而去分母,再解分式方程即可.
【详解】
解:去分母得:
x2-x-1=(x+1)2,
整理得:-3x-2=0,
解得:x=-,
检验:当x=-时,(x+1)2≠0,
故x=-是原方程的根.
故选C.
【点睛】
此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.
11、C
【解析】
①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
【详解】
:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,结论①错误;
②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
∴2≤c≤3,
∴-1≤a≤-,结论②正确;
③∵a<0,顶点坐标为(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
又∵a<0,
∴抛物线开口向下,
∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
故选C.
【点睛】
本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
12、C
【解析】
根据倒数的定义可知.
解:3的倒数是.
主要考查倒数的定义,要求熟练掌握.需要注意的是:
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-1.
【解析】
根据根的判别式计算即可.
【详解】
解:依题意得:
∵关于的一元二次方程有两个相等的实数根,
∴= =4-41(-k)=4+4k=0
解得,k=-1.
故答案为:-1.
【点睛】
本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.
14、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
【解析】
利用正方形的性质得到 OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O 上,从而得到⊙O 为正方形的外接圆.
【详解】
∵四边形 ABCD 为正方形,
∴OA=OB=OC=OD,
∴⊙O 为正方形的外接圆.
故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
15、
【解析】
观察两个方程组的形式与联系,可得第二个方程组中,解之即可.
【详解】
解:由题意得,
解得.
故答案为:.
【点睛】
本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.
16、 (x-2y)(x-2y+1)
【解析】
根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.
【详解】
=x2-4xy+4y2-2y+x
=(x-2y)2+x-2y
=(x-2y)(x-2y+1)
17、
【解析】
根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.
【详解】
解:多边形的边数是:360°÷40°=9,
则内角和是:(9-2)•180°=1260°.
故答案为1260°.
【点睛】
本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.
18、
【解析】
由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.
【详解】
详解:∵正方形ABCD,
∴∠B=90°.
∵AB=12,BM=5,
∴AM=1.
∵ME⊥AM,
∴∠AME=90°=∠B.
∵∠BAE=90°,
∴∠BAM+∠MAE=∠MAE+∠E,
∴∠BAM=∠E,
∴△ABM∽△EMA,
∴=,即=,
∴AE=,
∴DE=AE﹣AD=﹣12=.
故答案为.
【点睛】
本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)-6;(2).
【解析】
(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;
(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.
【详解】
解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上,
∴,解得:;
(2)由(1)知反比例函数解析式为,∵n=3,∴点B(﹣2,3)、D(﹣6,1),
如图,过点D作DE⊥BC于点E,延长DE交AB于点F,
在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,
∴△DBE≌△FBE(ASA),∴DE=FE=4,
∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,
∴,解得:,
∴.
【点睛】
本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.
20、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1
【解析】
试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
(1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.
试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.
在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;
②DE=EF.理由如下:
∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;
(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;
②AE1+DB1=DE1,理由如下:
∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.
21、见解析.
【解析】
由“SAS”可证△ABC≌△DEC,可得BC=CE,即可得结论.
【详解】
证明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°
∴△ABC≌△DEC(SAS)
∴BC=CE,
∵AC=AE+CE
∴AC=AE+BC
【点睛】
本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.
22、
【解析】
先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
【详解】
原式=
=1+
=1+
=
当x=2cos30°+tan45°
=2×+1
=+1时.
=
【点睛】
本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
23、见解析
【解析】
根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.
【详解】
证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,
又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,
又∵∠BAC=90°,AE⊥CD,
∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,
∴∠BAF=∠ACG. 又∵AB=CA,
∴
∴△ABF≌△CAG(ASA),
∴BF=AG
【点睛】
此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.
24、(1)详见解析;(2).
【解析】
∵四边形ABCD是矩形,
∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,
∴∠EAD=∠AFB,
∵DE⊥AF,
∴∠AED=90°,
在△ADE和△FAB中,
∴△ADE≌△FAB(AAS),
∴AE=BF=1
∵BF=FC=1
∴BC=AD=2
故在Rt△ADE中,∠ADE=30°,DE=,
∴的长==.
25、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).
【解析】
(1)设B(x1,5),由已知条件得 ,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.
(1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值, 最终得到E点坐标.
(3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.
又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP, 得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,
得n=3或n=﹣2(舍去).求得P点坐标.
【详解】
解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x= .
∴
解得,x1=2.
∴B(2,5).
又∵
∴b=.
∴抛物线解析式为y= ,
(1)如图1,
∵B(2,5),C(5,1).
∴直线BC的解析式为y=﹣x+1.
由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.
由S△CBF=EF•OB,
∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.
又∵S△CDB=BD•OC=×(2﹣)×1=
∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.
化为顶点式得,S四边形CDBF=﹣(m﹣1)1+ .
当m=1时,S四边形CDBF最大,为.
此时,E点坐标为(1,1).
(3)存在.
如图1,
由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.
过N作NO⊥x轴于点P(n,5).
∴NP=﹣n1+n+1,PG=n﹣1.
又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.
AB1=51=15.
∴AC1+BC1=AB1.
∴△ABC为直角三角形.
当△ABC∽△GNP,且时,
即,
整理得,n1﹣1n﹣6=5.
解得,n=1+ 或n=1﹣(舍去).
此时P点坐标为(1+,5).
当△ABC∽△GNP,且时,
即,
整理得,n1+n﹣11=5.
解得,n=3或n=﹣2(舍去).
此时P点坐标为(3,5).
综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).
【点睛】
本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.
26、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.
【解析】
(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;
(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;
(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.
【详解】
(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.
故答案为x,y;
(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.
故答案为2;
(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;
由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.
【点睛】
本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.
27、(1)见解析;(2)步行距离越大,燃烧脂肪越多;(3)1.
【解析】
(1)依据手机图片的中的数据,即可补全表格;
(2)依据步行距离与燃烧脂肪情况,即可得出步行距离越大,燃烧脂肪越多;
(3)步行距离和卡路里消耗数近似成正比例关系,即可预估她一天步行距离.
【详解】
解:(1)由图可得,4月5日的步行数为7689,步行距离为5.0公里,卡路里消耗为142千卡,燃烧脂肪18克;
4月6日的步行数为15638,步行距离为1.0公里,卡路里消耗为234千卡,燃烧脂肪30克;
(2)由图可得,步行距离越大,燃烧脂肪越多;
故答案为:步行距离越大,燃烧脂肪越多;
(3)由图可得,步行时每公里约消耗卡路里25千卡,故豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为1公里.
故答案为:1.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
山西省蒲县2022年中考数学考试模拟冲刺卷含解析: 这是一份山西省蒲县2022年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了下列二次根式,最简二次根式是,下列方程中,两根之和为2的是等内容,欢迎下载使用。
山西省阳泉市重点中学2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份山西省阳泉市重点中学2021-2022学年中考数学考试模拟冲刺卷含解析,共24页。
山西省兴县2022年中考数学考试模拟冲刺卷含解析: 这是一份山西省兴县2022年中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了拒绝“餐桌浪费”,刻不容缓,某班7名女生的体重等内容,欢迎下载使用。