开学活动
搜索
    上传资料 赚现金

    2022届山东省威海市荣成市中考试题猜想数学试卷含解析

    2022届山东省威海市荣成市中考试题猜想数学试卷含解析第1页
    2022届山东省威海市荣成市中考试题猜想数学试卷含解析第2页
    2022届山东省威海市荣成市中考试题猜想数学试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省威海市荣成市中考试题猜想数学试卷含解析

    展开

    这是一份2022届山东省威海市荣成市中考试题猜想数学试卷含解析,共22页。试卷主要包含了已知抛物线y=x2-2mx-4,估计的值在等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列关于x的方程中一定没有实数根的是( )
    A. B. C. D.
    2.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是(  )

    A.5 B.9 C.15 D.22
    3.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )

    A.甲的速度是4km/h B.乙的速度是10km/h
    C.乙比甲晚出发1h D.甲比乙晚到B地3h
    4.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为(  )

    A.8cm B.4cm C.4cm D.5cm
    5.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=(  )

    A.110° B.120° C.125° D.135°
    6.若代数式有意义,则实数x的取值范围是( )
    A.x=0 B.x=2 C.x≠0 D.x≠2
    7.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为(  )
    A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)
    8.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是(  )
    A.有两个不相等实数根 B.有两个相等实数根
    C.有且只有一个实数根 D.没有实数根
    9.估计的值在(  )
    A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
    10.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高(  )
    A.10℃ B.﹣10℃ C.6℃ D.﹣6℃
    11.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为(  )
    A. B. C. D.
    12.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )
    A.16个 B.15个 C.13个 D.12个
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.
    14.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.

    15.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.

    16.要使分式有意义,则x的取值范围为_________.
    17.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
    (1)计算△ABC的周长等于_____.
    (2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
    ___________________________.

    18.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.
    (1)如图,点D在线段CB上时,
    ①求证:△AEF≌△ADC;
    ②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;
    (2)当∠DAB=15°时,求△ADE的面积.

    20.(6分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
    (1)求双曲线的解析式;
    (2)求点C的坐标,并直接写出y1<y2时x的取值范围.

    21.(6分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.
    22.(8分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
    (1)若∠G=48°,求∠ACB的度数;
    (1)若AB=AE,求证:∠BAD=∠COF;
    (3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.

    23.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).
    (1)求一次函数与反比例函数的解析式;
    (2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.

    24.(10分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
    (1)求证:四边形OCAD是平行四边形;
    (2)填空:①当∠B= 时,四边形OCAD是菱形;
    ②当∠B= 时,AD与相切.

    25.(10分)(1)化简:
    (2)解不等式组.
    26.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
    摸球总
    次数
    10
    20
    30
    60
    90
    120
    180
    240
    330
    450
    “和为8”出
    现的频数
    2
    10
    13
    24
    30
    37
    58
    82
    110
    150
    “和为8”出
    现的频率
    0.20
    0.50
    0.43
    0.40
    0.33
    0.31
    0.32
    0.34
    0.33
    0.33
    解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
    27.(12分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.

    求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据根的判别式的概念,求出△的正负即可解题.
    【详解】
    解: A. x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,
    B. , △=36-144=-1080,∴原方程没有实数根,
    C. , , △=10,∴原方程有两个不相等的实数根,
    D. , △=m2+80,∴原方程有两个不相等的实数根,
    故选B.
    【点睛】
    本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.
    2、B
    【解析】
    条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    【详解】
    课外书总人数:6÷25%=24(人),
    看5册的人数:24﹣5﹣6﹣4=9(人),
    故选B.
    【点睛】
    本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
    3、C
    【解析】
    甲的速度是:20÷4=5km/h;
    乙的速度是:20÷1=20km/h;
    由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,
    故选C.
    4、C
    【解析】
    连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.
    【详解】
    解:连接OC,如图所示:
    ∵AB是⊙O的直径,弦CD⊥AB,

    ∵OA=OC,
    ∴∠A=∠OCA=22.5°,
    ∵∠COE为△AOC的外角,
    ∴∠COE=45°,
    ∴△COE为等腰直角三角形,

    故选:C.

    【点睛】
    此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.
    5、D
    【解析】
    如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
    ∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
    ∴∠ABE+∠BED+∠CDE=360°.
    又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
    ∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,
    ∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
    故选D.

    【点睛】
    本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
    6、D
    【解析】
    根据分式的分母不等于0即可解题.
    【详解】
    解:∵代数式有意义,
    ∴x-2≠0,即x≠2,
    故选D.
    【点睛】
    本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.
    7、C
    【解析】
    试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.
    考点:二次函数的性质.
    8、A
    【解析】
    【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
    【详解】∵a=1,b=1,c=﹣3,
    ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
    ∴方程x2+x﹣3=0有两个不相等的实数根,
    故选A.
    【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    9、C
    【解析】
    ∵ ,
    ∴.
    即的值在6和7之间.
    故选C.
    10、A
    【解析】
    用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.
    【详解】
    8-(-2)=8+2=10℃.
    即这天的最高气温比最低气温高10℃.
    故选A.
    11、C
    【解析】
    列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.
    解:

    共16种情况,和为6的情况数有3种,所以概率为.
    故选C.
    12、D
    【解析】
    由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.
    【详解】
    解:设白球个数为:x个,
    ∵摸到红色球的频率稳定在25%左右,
    ∴口袋中得到红色球的概率为25%,
    ∴ ,
    解得:x=12,
    经检验x=12是原方程的根,
    故白球的个数为12个.
    故选:D.
    【点睛】
    本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.
    【详解】
    解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,
    ∴掷一次这枚骰子,向上的一面的点数为素数的概率是:.
    故答案为:.
    【点睛】
    本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.
    14、35°
    【解析】
    分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.
    详解:∵直尺的两边互相平行,∠1=25°,
    ∴∠3=∠1=25°,
    ∴∠2=60°-∠3=60°-25°=35°.

    故答案为35°.
    点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.
    15、80°.
    【解析】
    如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.
    【详解】
    如图,

    ∵m∥n,
    ∴∠1=∠3,
    ∵∠1=100°,
    ∴∠3=100°,
    ∴∠2=180°﹣100°=80°,
    故答案为80°.
    【点睛】
    本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.
    16、x≠1
    【解析】
    由题意得
    x-1≠0,
    ∴x≠1.
    故答案为x≠1.
    17、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
    【解析】
    (1)利用勾股定理求出AB,从而得到△ABC的周长;
    (2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.
    【详解】
    解:(1)∵AC=3,BC=4,∠C=90º,
    ∴根据勾股定理得AB=5,
    ∴△ABC的周长=5+4+3=12.
    (2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。

    故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
    【点睛】
    本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.
    18、4cm.
    【解析】
    由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论.
    【详解】
    由题意知OD⊥AB,交AB于点E,
    ∵AB=16cm,
    ∴BC=AB=×16=8cm,
    在Rt△OBE中,
    ∵OB=10cm,BC=8cm,
    ∴OC=(cm),
    ∴CD=OD-OC=10-6=4(cm)
    故答案为4cm.
    【点睛】
    本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)①证明见解析;②25;(2)为或50+1.
    【解析】
    (1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.
    【详解】
    (1)、①证明:在Rt△ABC中,
    ∵∠B=30°,AB=10,
    ∴∠CAB=60°,AC=AB=5,
    ∵点F是AB的中点, 
    ∴AF=AB=5,
    ∴AC=AF,
    ∵△ADE是等边三角形,
    ∴AD=AE,∠EAD=60°,
    ∵∠CAB=∠EAD,
    即∠CAD+∠DAB=∠FAE+∠DAB,
    ∴∠CAD=∠FAE,
    ∴△AEF≌△ADC(SAS);
    ②∵△AEF≌△ADC,
    ∴∠AEF=∠C=90°,EF=CD=x,
    又∵点F是AB的中点,
    ∴AE=BE=y, 
    在Rt△AEF中,勾股定理可得:y2=25+x2,
     ∴y2﹣x2=25.

    (2)①当点在线段CB上时, 由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,
    ∴AD2=50,△ADE的面积为;
    ②当点在线段CB的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,

    ∴在Rt△ACD中,勾股定理可得AD2=200+100,
    综上所述,△ADE的面积为或.
    【点睛】
    此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.
    20、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
    【解析】
    【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
    (1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
    【详解】(1)∵点A在直线y1=1x﹣1上,
    ∴设A(x,1x﹣1),
    过A作AC⊥OB于C,
    ∵AB⊥OA,且OA=AB,
    ∴OC=BC,
    ∴AC=OB=OC,
    ∴x=1x﹣1,
    x=1,
    ∴A(1,1),
    ∴k=1×1=4,
    ∴;
    (1)∵,解得:,,
    ∴C(﹣1,﹣4),
    由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.

    【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
    21、(2)见解析;(2)k

    相关试卷

    山东省威海市中考数学试卷(含解析版):

    这是一份山东省威海市中考数学试卷(含解析版),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年山东省威海市荣成市16校联盟九年级(上)期中数学试卷(五四学制)(含解析):

    这是一份2023-2024学年山东省威海市荣成市16校联盟九年级(上)期中数学试卷(五四学制)(含解析),共26页。试卷主要包含了选择题,四象限;,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年山东省威海市中考数学试卷(含解析):

    这是一份2023年山东省威海市中考数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map