|试卷下载
搜索
    上传资料 赚现金
    2022届山东省青岛市李沧、平度、西海岸、胶州中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022届山东省青岛市李沧、平度、西海岸、胶州中考数学考试模拟冲刺卷含解析01
    2022届山东省青岛市李沧、平度、西海岸、胶州中考数学考试模拟冲刺卷含解析02
    2022届山东省青岛市李沧、平度、西海岸、胶州中考数学考试模拟冲刺卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省青岛市李沧、平度、西海岸、胶州中考数学考试模拟冲刺卷含解析

    展开
    这是一份2022届山东省青岛市李沧、平度、西海岸、胶州中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列图案中,是轴对称图形的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是( )

    A.155° B.145° C.135° D.125°
    2.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为(  )

    A.54° B.36° C.30° D.27°
    3.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )
    A. B. C. D.
    4.下列图案中,是轴对称图形的是( )
    A. B. C. D.
    5.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是(  )
    A.27 B.36 C.27或36 D.18
    6.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是
    A. B. C. D.
    7.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为(  )

    A.50° B.55° C.60° D.65°
    8.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?(  )
    A.350 B.351 C.356 D.358
    9.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )

    A.15m B.17m C.18m D.20m
    10.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是(  )

    A.1 B.3 C.4 D.5
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

    12.已知一组数据-3,x,-2, 3,1,6的众数为3,则这组数据的中位数为______.
    13.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.
    14.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.

    15.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.

    16.抛物线y=(x﹣2)2﹣3的顶点坐标是____.
    17.对于一切不小于2的自然数n,关于x的一元二次方程x2﹣(n+2)x﹣2n2=0的两个根记作an,bn(n≥2),则______
    三、解答题(共7小题,满分69分)
    18.(10分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

    请根据以上信息回答:
    (1)本次参加抽样调查的居民有多少人?
    (2)将两幅不完整的图补充完整;
    (3)求扇形统计图中C所对圆心角的度数;
    (4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
    19.(5分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
    (1)证明:∠C=∠D;
    (2)若∠BEF=140°,求∠C的度数;
    (3)若EF=2,tanB=3,求CE•CG的值.

    20.(8分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.
    请你根据图中所提供的信息,完成下列问题:
    本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?
    21.(10分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.

    (1)求证:四边形BCFE是菱形;
    (2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
    22.(10分)如图,在四边形中,为一条对角线,,,.为的中点,连结.

    (1)求证:四边形为菱形;
    (2)连结,若平分,,求的长.
    23.(12分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
    根据统计图的信息解决下列问题:
    本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是   ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
    24.(14分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.
    (1)求反比例函数y=的表达式;
    (2)在x轴上是否存在一点P,使得S△AOP=S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    解:∵

    ∵EO⊥AB,


    故选D.
    2、D
    【解析】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.
    3、D
    【解析】
    由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.
    【详解】
    解:设每头牛值金x两,每只羊值金y两,
    由5头牛、2只羊,值金10两可得:5x+2y=10,
    由2头牛、5只羊,值金8两可得2x+5y=8,
    则7头牛、7只羊,值金18两,据此可知7x+7y=18,
    所以方程组错误,
    故选:D.
    【点睛】
    本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.
    4、B
    【解析】
    根据轴对称图形的定义,逐一进行判断.
    【详解】
    A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
    故选B.
    【点睛】
    本题考查的是轴对称图形的定义.
    5、B
    【解析】
    试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
    试题解析:分两种情况:
    (3)当其他两条边中有一个为3时,将x=3代入原方程,
    得:33-33×3+k=0
    解得:k=37
    将k=37代入原方程,
    得:x3-33x+37=0
    解得x=3或9
    3,3,9不能组成三角形,不符合题意舍去;
    (3)当3为底时,则其他两边相等,即△=0,
    此时:344-4k=0
    解得:k=3
    将k=3代入原方程,
    得:x3-33x+3=0
    解得:x=6
    3,6,6能够组成三角形,符合题意.
    故k的值为3.
    故选B.
    考点:3.等腰三角形的性质;3.一元二次方程的解.
    6、D
    【解析】
    圆锥的侧面积=×80π×90=3600π(cm2) .
    故选D.
    7、D
    【解析】
    试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.
    考点:圆的基本性质
    8、B
    【解析】
    根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.
    【详解】
    解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,
    设小昱所写的第n个数为101,
    根据题意得:101=1+(n-1)×2,
    整理得:2(n-1)=100,即n-1=50,
    解得:n=51,
    则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.
    故选B.
    【点睛】
    此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.
    9、C
    【解析】
    连结OA,如图所示:

    ∵CD⊥AB,
    ∴AD=BD=AB=12m.
    在Rt△OAD中,OA=13,OD=,
    所以CD=OC+OD=13+5=18m.
    故选C.
    10、D
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由抛物线的对称轴可知:,
    ∴,
    由抛物线与轴的交点可知:,
    ∴,
    ∴,故①正确;
    ②抛物线与轴只有一个交点,
    ∴,
    ∴,故②正确;
    ③令,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,故③正确;
    ④由图象可知:令,
    即的解为,
    ∴的根为,故④正确;
    ⑤∵,
    ∴,故⑤正确;
    故选D.
    【点睛】
    考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.

    二、填空题(共7小题,每小题3分,满分21分)
    11、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)
    【解析】
    (1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;
    (2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;
    (1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.
    【详解】
    解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,
    解得:b=﹣2,c=﹣1,
    ∴抛物线的解析式为.
    ∵令,解得:,,
    ∴点B的坐标为(﹣1,0).
    故答案为﹣2;﹣1;(﹣1,0).
    (2)存在.理由:如图所示:

    ①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).
    设AC的解析式为y=kx﹣1.
    ∵将点A的坐标代入得1k﹣1=0,解得k=1,
    ∴直线AC的解析式为y=x﹣1,
    ∴直线CP1的解析式为y=﹣x﹣1.
    ∵将y=﹣x﹣1与联立解得,(舍去),
    ∴点P1的坐标为(1,﹣4).
    ②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.
    ∵将x=1,y=0代入得:﹣1+b=0,解得b=1,
    ∴直线AP2的解析式为y=﹣x+1.
    ∵将y=﹣x+1与联立解得=﹣2,=1(舍去),
    ∴点P2的坐标为(﹣2,5).
    综上所述,P的坐标是(1,﹣4)或(﹣2,5).
    (1)如图2所示:连接OD.

    由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
    由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,
    ∴D是AC的中点.
    又∵DF∥OC,
    ∴DF=OC=,
    ∴点P的纵坐标是,
    ∴,解得:x=,
    ∴当EF最短时,点P的坐标是:(,)或(,).
    12、
    【解析】
    分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    详解:∵-3,x,-1, 3,1,6的众数是3,
    ∴x=3,
    先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,
    ∴这组数的中位数是=1.
    故答案为: 1.
    点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    13、28
    【解析】
    设这种电子产品的标价为x元,
    由题意得:0.9x−21=21×20%,
    解得:x=28,
    所以这种电子产品的标价为28元.
    故答案为28.
    14、a+b=1.
    【解析】
    试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.
    考点:1角平分线;2平面直角坐标系.
    15、
    【解析】
    过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.
    【详解】
    如图,过点D作DF⊥BC于点F,

    ∵四边形ABCD是菱形,
    ∴BC=CD,AD∥BC,
    ∵∠DEB=90°,AD∥BC,
    ∴∠EBC=90°,且∠DEB=90°,DF⊥BC,
    ∴四边形DEBF是矩形,
    ∴DF=BE,DE=BF,
    ∵点C的横坐标为5,BE=3DE,
    ∴BC=CD=5,DF=3DE,CF=5﹣DE,
    ∵CD2=DF2+CF2,
    ∴25=9DE2+(5﹣DE)2,
    ∴DE=1,
    ∴DF=BE=3,
    设点C(5,m),点D(1,m+3),
    ∵反比例函数y=图象过点C,D,
    ∴5m=1×(m+3),
    ∴m=,
    ∴点C(5,),
    ∴k=5×=,
    故答案为:
    【点睛】
    本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.
    16、(2,﹣3)
    【解析】
    根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).
    【详解】
    抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).
    故答案为(2,﹣3)
    【点睛】
    本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.
    17、﹣.
    【解析】
    试题分析:由根与系数的关系得:,
    则, 则,
    ∴原式=.
    点睛:本题主要考查的就是一元二次方程的韦达定理以及规律的整理,属于中等题型.解决这个问题的关键就是要想到使用韦达定理,然后根据计算的法则得出规律,从而达到简便计算的目的.

    三、解答题(共7小题,满分69分)
    18、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4).
    【解析】
    试题分析:(1)用B的频数除以B所占的百分比即可求得结论;
    (2)分别求得C的频数及其所占的百分比即可补全统计图;
    (3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;
    (4)列出树形图即可求得结论.
    试题解析:(1)60÷10%=600(人).
    答:本次参加抽样调查的居民有600人.
    (2)如图;

    (3),360°×(1-10%-30%-40%)=72°.
    (4)如图;

    (列表方法略,参照给分).
    P(C粽)=.
    答:他第二个吃到的恰好是C粽的概率是.
    考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.
    19、(1)见解析;(2)70°;(3)1.
    【解析】
    (1)先根据等边对等角得出∠B=∠D,即可得出结论;
    (2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
    (3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
    【详解】
    (1)∵AB=AD,
    ∴∠B=∠D,
    ∵∠B=∠C,
    ∴∠C=∠D;
    (2)∵四边形ABEF是圆内接四边形,
    ∴∠DFE=∠B,
    由(1)知,∠B=∠D,
    ∴∠D=∠DFE,
    ∵∠BEF=140°=∠D+∠DFE=2∠D,
    ∴∠D=70°,
    由(1)知,∠C=∠D,
    ∴∠C=70°;
    (3)如图,由(2)知,∠D=∠DFE,
    ∴EF=DE,
    连接AE,OC,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴BE=DE,
    ∴BE=EF=2,
    在Rt△ABE中,tanB==3,
    ∴AE=3BE=6,根据勾股定理得,AB=,
    ∴OA=OC=AB=,
    ∵点C是 的中点,
    ∴ ,
    ∴∠AOC=90°,
    ∴AC=OA=2,
    ∵,
    ∴∠CAG=∠CEA,
    ∵∠ACG=∠ECA,
    ∴△ACG∽△ECA,
    ∴,
    ∴CE•CG=AC2=1.

    【点睛】
    本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.
    20、(1)120;(2)  ;(3)答案见解析;(4)1650.
    【解析】
    (1)依据节目B的数据,即可得到调查的学生人数;
    (2)依据A部分的百分比,即可得到A部分所占圆心角的度数;
    (3)求得C部分的人数,即可将条形统计图补充完整;
    (4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.
    【详解】

    故答案为120;

    故答案为;
    :,
    如图所示:


    答:该校最喜爱中国诗词大会的学生有1650名.
    【点睛】
    本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.
    21、(1)见解析;(2)见解析
    【解析】
    (1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.
    (2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.
    【详解】
    解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.
    又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.
    ∴四边形BCFE是平行四边形.
    又∵BE=FE,∴四边形BCFE是菱形.
    (2)∵∠BCF=120°,∴∠EBC=60°.
    ∴△EBC是等边三角形.
    ∴菱形的边长为4,高为.
    ∴菱形的面积为4×=.
    22、(1)证明见解析;(2)AC=;
    【解析】
    (1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
    (2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;
    【详解】
    (1)证明:∵AD=2BC,E为AD的中点,
    ∴DE=BC,
    ∵AD∥BC,
    ∴四边形BCDE是平行四边形,
    ∵∠ABD=90°,AE=DE,
    ∴BE=DE,
    ∴四边形BCDE是菱形.
    (2)连接AC,如图所示:

    ∵∠ADB=30°,∠ABD=90°,
    ∴AD=2AB,
    ∵AD=2BC,
    ∴AB=BC,
    ∴∠BAC=∠BCA,
    ∵AD∥BC,
    ∴∠DAC=∠BCA,
    ∴∠CAB=∠CAD=30°
    ∴AB=BC=DC=1,AD=2BC=2,
    ∵∠DAC=30°,∠ADC=60°,
    在Rt△ACD中,AC=.
    【点睛】
    考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.
    23、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
    【解析】
    (1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
    (2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
    (3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
    【详解】
    解:(1)本次调查的学生有30÷20%=150人;
    (2)C类别人数为150﹣(30+45+15)=60人,
    补全条形图如下:

    (3)扇形统计图中C对应的中心角度数是360°×=144°
    故答案为144°
    (4)600×()=300(人),
    答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
    【点睛】
    本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
    24、(1)y=;(1)(﹣1,0)或(1,0)
    【解析】
    (1)把A的坐标代入反比例函数的表达式,即可求出答案;
    (1)求出∠A=60°,∠B=30°,求出线段OA和OB,求出△AOB的面积,根据已知S△AOPS△AOB,求出OP长,即可求出答案.
    【详解】
    (1)把A(,1)代入反比例函数y得:k=1,所以反比例函数的表达式为y;
    (1)∵A(,1),OA⊥AB,AB⊥x轴于C,∴OC,AC=1,OA1.
    ∵tanA,∴∠A=60°.
    ∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA•OB1×1.
    ∵S△AOPS△AOB,∴OP×AC.
    ∵AC=1,∴OP=1,∴点P的坐标为(﹣1,0)或(1,0).

    【点睛】
    本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出△AOB的面积是解答此题的关键.

    相关试卷

    2023-2024学年山东省青岛李沧、平度、西海岸、胶州数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年山东省青岛李沧、平度、西海岸、胶州数学九上期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了对于二次函数y=2,二次函数y=ax2+bx+4,方程的根是等内容,欢迎下载使用。

    山东省青岛市李沧、平度、西海岸、胶州2023-2024学年数学九上期末联考试题含答案: 这是一份山东省青岛市李沧、平度、西海岸、胶州2023-2024学年数学九上期末联考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    山东省青岛市李沧、平度、西海岸、胶州2023-2024学年数学八年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份山东省青岛市李沧、平度、西海岸、胶州2023-2024学年数学八年级第一学期期末质量跟踪监视模拟试题含答案,共6页。试卷主要包含了估算的值等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map