|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年山东省青岛李沧、平度、西海岸、胶州十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2022年山东省青岛李沧、平度、西海岸、胶州十校联考最后数学试题含解析01
    2022年山东省青岛李沧、平度、西海岸、胶州十校联考最后数学试题含解析02
    2022年山东省青岛李沧、平度、西海岸、胶州十校联考最后数学试题含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年山东省青岛李沧、平度、西海岸、胶州十校联考最后数学试题含解析

    展开
    这是一份2022年山东省青岛李沧、平度、西海岸、胶州十校联考最后数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.要使分式有意义,则x的取值范围是( )
    A.x= B.x> C.x< D.x≠
    2.如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体(  )

    A.主视图不变,左视图不变
    B.左视图改变,俯视图改变
    C.主视图改变,俯视图改变
    D.俯视图不变,左视图改变
    3.下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是.其中正确的个数(  )
    A.1 B.2 C.3 D.4
    4.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是(  )

    1
    2
    3
    4
    5
    成绩(m)
    8.2
    8.0
    8.2
    7.5
    7.8
    A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.0
    5.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有(  )个.

    A.3 B.4 C.2 D.1
    6.已知M=9x2-4x+3,N=5x2+4x-2,则M与N的大小关系是(   )
    A.M>N B.M=N C.M 7.矩形具有而平行四边形不具有的性质是(  )
    A.对角相等 B.对角线互相平分
    C.对角线相等 D.对边相等
    8.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为(  )

    A.4 B.5 C.6 D.7
    9.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得(  )
    A.168(1﹣x)2=108 B.168(1﹣x2)=108
    C.168(1﹣2x)=108 D.168(1+x)2=108
    10.将5570000用科学记数法表示正确的是( )
    A.5.57×105 B.5.57×106 C.5.57×107 D.5.57×108
    二、填空题(共7小题,每小题3分,满分21分)
    11.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
    12.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”
    题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)
    如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 .

    13.已知 x(x+1)=x+1,则x=________.
    14.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
    15.化简: =____.
    16.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.

    17.四张背面完全相同的卡片上分别写有0、、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.
    三、解答题(共7小题,满分69分)
    18.(10分)计算:(π﹣3.14)0﹣2﹣|﹣3|.
    19.(5分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
    时间x(天)

    1≤x<50

    50≤x≤90

    售价(元/件)

    x+40

    90

    每天销量(件)

    200-2x

    已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
    20.(8分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
    根据上述信息,解答下列各题:
    ×
    (1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
    (2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
    (3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
    统计量
    平均数(次)
    中位数(次)
    众数(次)
    方差

    该班级男生





    根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
    21.(10分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.

    (1)求抛物线y=x2+bx+c的解析式.
    (2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.
    ①结合函数的图象,求x3的取值范围;
    ②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.
    22.(10分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:
    规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
    规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
    小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
    23.(12分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)

    24.(14分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
    评估成绩n(分)

    评定等级

    频数

    90≤n≤100

    A

    2

    80≤n<90

    B



    70≤n<80

    C

    15

    n<70

    D

    6

    根据以上信息解答下列问题:
    (1)求m的值;
    (2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
    (3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.
    【详解】
    ∵3x−7≠0,
    ∴x≠.
    故选D.
    【点睛】
    本题考查的是分式有意义的条件:当分母不为0时,分式有意义.
    2、A
    【解析】
    分别得到将正方体①移走前后的三视图,依此即可作出判断.
    【详解】
    将正方体①移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体①移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。
    将正方体①移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体①移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。
    将正方体①移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体①移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。
    故选A.
    【点睛】
    考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.
    3、A
    【解析】
    根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得.
    【详解】
    ①平分弦(不是直径)的直径垂直于弦,故此结论错误;
    ②在n次随机实验中,事件A出现m次,则事件A发生的频率,试验次数足够大时可近似地看做事件A的概率,故此结论错误;
    ③各角相等的圆外切多边形是正多边形,此结论正确;
    ④各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;
    ⑤若一个事件可能发生的结果共有n种,再每种结果发生的可能性相同是,每一种结果发生的可能性是.故此结论错误;
    故选:A.
    【点睛】
    本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义.
    4、D
    【解析】
    解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.
    其中8.1出现1次,出现次数最多,8.2排在第三,
    ∴这组数据的众数与中位数分别是:8.1,8.2.
    故选D.
    【点睛】
    本题考查众数;中位数.
    5、A
    【解析】
    利用抛物线的对称性可确定A点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=-1时,y<0,即a-b+c<0和a>0可对④进行判断.
    【详解】
    ∵抛物线的对称轴为直线x=-1,点B的坐标为(1,0),
    ∴A(-3,0),
    ∴AB=1-(-3)=4,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴△=b2-4ac>0,所以②正确;
    ∵抛物线开口向下,
    ∴a>0,
    ∵抛物线的对称轴为直线x=-=-1,
    ∴b=2a>0,
    ∴ab>0,所以③错误;
    ∵x=-1时,y<0,
    ∴a-b+c<0,
    而a>0,
    ∴a(a-b+c)<0,所以④正确.
    故选A.
    【点睛】
    本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.
    6、A
    【解析】
    若比较M,N的大小关系,只需计算M-N的值即可.
    【详解】
    解:∵M=9x2-4x+3,N=5x2+4x-2,
    ∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,
    ∴M>N.
    故选A.
    【点睛】
    本题的主要考查了比较代数式的大小,可以让两者相减再分析情况.
    7、C
    【解析】
    试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.
    解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;
    平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;
    ∴矩形具有而平行四边形不一定具有的性质是对角线相等,
    故选C.
    8、B
    【解析】
    试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.

    此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得DC′===1.故选B.
    9、A
    【解析】
    设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.
    【详解】
    设每次降价的百分率为x,
    根据题意得:168(1-x)2=1.
    故选A.
    【点睛】
    此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.
    10、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.
    【详解】
    5570000=5.57×101所以B正确

    二、填空题(共7小题,每小题3分,满分21分)
    11、5 1.
    【解析】
    ∵一组数据:3,a,4,6,7,它们的平均数是5,
    ∴,
    解得,,
    ∴=1.
    故答案为5,1.
    12、(x+1);.
    【解析】
    试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.
    故答案为(x+1),.
    考点:由实际问题抽象出一元二次方程;勾股定理的应用.
    13、1或-1
    【解析】
    方程可化为:

    ∴或,
    ∴或.
    故答案为1或-1.
    14、15π
    【解析】
    【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
    【详解】设圆锥母线长为l,∵r=3,h=4,
    ∴母线l=,
    ∴S侧=×2πr×5=×2π×3×5=15π,
    故答案为15π.
    【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
    15、
    【解析】
    先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.
    【详解】
    原式,
    故答案为
    【点睛】
    本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.
    16、1
    【解析】
    如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.
    【详解】
    如图作点D关于BC的对称点D′,连接PD′,ED′,
    在Rt△EDD′中,∵DE=6,DD′=1,
    ∴ED′==10,
    ∵DP=PD′,
    ∴PD+PF=PD′+PF,
    ∵EF=EA=2是定值,
    ∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,
    ∴PF+PD的最小值为1,
    故答案为1.

    【点睛】
    本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.
    17、
    【解析】
    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【详解】
    ∵在0.、、、这四个实数种,有理数有0.、、这3个,
    ∴抽到有理数的概率为,
    故答案为.
    【点睛】
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.

    三、解答题(共7小题,满分69分)
    18、﹣1.
    【解析】
    本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    原式
    =1﹣3+4﹣3,
    =﹣1.
    【点睛】
    本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
    19、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.
    【解析】
    (1)根据单价乘以数量,可得利润,可得答案.
    (2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.
    (3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.
    【详解】
    (1)当1≤x<50时,,
    当50≤x≤90时,,
    综上所述:.
    (2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,
    当x=45时,y最大=-2×452+180×45+2000=6050,
    当50≤x≤90时,y随x的增大而减小,
    当x=50时,y最大=6000,
    综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.
    (3)解,结合函数自变量取值范围解得,
    解,结合函数自变量取值范围解得
    所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.
    【点睛】
    本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.
    20、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
    【解析】
    (1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
    (2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
    (1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
    【详解】
    (1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
    故答案为20,1.
    (2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
    答:该班级男生有2人.
    (1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
    ∵2>,∴男生比女生的波动幅度大.
    【点睛】
    本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    21、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.
    【解析】
    (2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.
    【详解】
    (2)在y=﹣x+3中,令x=2,则y=3;
    令y=2,则x=3;得B(3,2),C(2,3),
    将点B(3,2),C(2,3)的坐标代入y=x2+bx+c
    得:,解得
    ∴y=x2﹣4x+3;
    (2)∵直线l2平行于x轴,
    ∴y2=y2=y3=m,
    ①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,
    ∴顶点为D(2,﹣2),
    当直线l2经过点D时,m=﹣2;
    当直线l2经过点C时,m=3
    ∵x2>x2>2,
    ∴﹣2<y3<3,
    即﹣2<﹣x3+3<3,
    得2<x3<4,
    ②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,
    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.
    ∵x2>x2>2,
    ∴x3﹣x2=x2﹣x2,
    即 x3=2x2﹣x2,
    ∵l2∥x轴,即PQ∥x轴,
    ∴点P、Q关于抛物线的对称轴l2对称,
    又抛物线的对称轴l2为x=2,
    ∴2﹣x2=x2﹣2,
    即x2=4﹣x2,
    ∴x3=3x2﹣4,
    将点Q(x2,y2)的坐标代入y=x2﹣4x+3
    得y2=x22﹣4x2+3,又y2=y3=﹣x3+3
    ∴x22﹣4x2+3=﹣x3+3,
    ∴x22﹣4x2=﹣(3x2﹣4)
    即 x22﹣x2﹣4=2,解得x2=,(负值已舍去),
    ∴m=()2﹣4×+3=
    如图②,当直线l2在x轴的上方时,点N在点P、Q之间,

    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.
    由上可得点P、Q关于直线l2对称,
    ∴点N在抛物线的对称轴l2:x=2,
    又点N在直线y=﹣x+3上,
    ∴y3=﹣2+3=2,即m=2.
    故m的值为或2.
    【点睛】
    本题是二次函数综合题,
    本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.
    22、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析
    【解析】
    (1)利用列举法,列举所有的可能情况即可;
    (2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.
    【详解】
    (1)所有可能出现的结果如下:,,,,,,,,共9种;
    (1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,
    ∴在规划1中,(小黄赢);
    红心牌点数是黑桃牌点数的整倍数有4种可能,
    ∴在规划2中,(小黄赢).
    ∵,∴小黄要在游戏中获胜,小黄会选择规则1.
    【点睛】
    考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
    23、见解析
    【解析】
    以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.
    【详解】
    解:如图,点E即为所求作的点.

    【点睛】
    本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.
    24、(1)25;(2)8°48′;(3).
    【解析】
    试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)∵C等级频数为15,占60%,
    ∴m=15÷60%=25;
    (2)∵B等级频数为:25﹣2﹣15﹣6=2,
    ∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;
    (3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:

    ∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,
    ∴其中至少有一家是A等级的概率为:=.
    考点:频数(率)分布表;扇形统计图;列表法与树状图法.

    相关试卷

    2023-2024学年山东省青岛李沧、平度、西海岸、胶州数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年山东省青岛李沧、平度、西海岸、胶州数学九上期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了对于二次函数y=2,二次函数y=ax2+bx+4,方程的根是等内容,欢迎下载使用。

    山东省青岛市李沧、平度、西海岸、胶州2023-2024学年数学九上期末联考试题含答案: 这是一份山东省青岛市李沧、平度、西海岸、胶州2023-2024学年数学九上期末联考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022-2023学年山东省青岛李沧、平度、西海岸、胶州七下数学期末教学质量检测试题含答案: 这是一份2022-2023学年山东省青岛李沧、平度、西海岸、胶州七下数学期末教学质量检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,在函数自变量x的取值范围是,已知,则的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map