|试卷下载
搜索
    上传资料 赚现金
    2022届江苏省盐城市建湖县城南实验初级中学中考数学模拟试题含解析
    立即下载
    加入资料篮
    2022届江苏省盐城市建湖县城南实验初级中学中考数学模拟试题含解析01
    2022届江苏省盐城市建湖县城南实验初级中学中考数学模拟试题含解析02
    2022届江苏省盐城市建湖县城南实验初级中学中考数学模拟试题含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省盐城市建湖县城南实验初级中学中考数学模拟试题含解析

    展开
    这是一份2022届江苏省盐城市建湖县城南实验初级中学中考数学模拟试题含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,若x>y,则下列式子错误的是,计算,估计介于等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.二次函数(a≠0)的图象如图所示,则下列命题中正确的是(  )

    A.a >b>c
    B.一次函数y=ax +c的图象不经第四象限
    C.m(am+b)+b<a(m是任意实数)
    D.3b+2c>0
    2.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
    A.2 B.3 C.4 D.5
    3.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是(  )
    A. B.
    C. D.
    4.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )

    A.垂线段最短 B.经过一点有无数条直线
    C.两点之间,线段最短 D.经过两点,有且仅有一条直线
    5.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).



























    A.只有一个交点 B.有两个交点,且它们分别在轴两侧
    C.有两个交点,且它们均在轴同侧 D.无交点
    6.如果与互补,与互余,则与的关系是( )
    A. B.
    C. D.以上都不对
    7.已知点,与点关于轴对称的点的坐标是( )
    A. B. C. D.
    8.若x>y,则下列式子错误的是( )
    A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.
    9.计算:得(  )
    A.- B.- C.- D.
    10.估计介于( )
    A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间
    11.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2﹣4x+m的图象上的三点,则y1,y2,y3的大小关系是( )
    A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y2
    12.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,扇形OAB的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到O′A′B′的位置时,则点O到点O′所经过的路径长为_____.

    14.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.

    15.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过0.005秒以听到,这个数据用科学记数法可以表示为_____秒.
    16.已知 a、b 是方程 x2﹣2x﹣1=0 的两个根,则 a2﹣a+b 的值是_______.
    17.若点M(1,m)和点N(4,n)在直线y=﹣x+b上,则m___n(填>、<或=)
    18.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
    20.(6分)如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
    (1)当CM:CB=1:4时,求CF的长.
    (2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
    (3)当△ABM∽△EFN时,求CM的长.

    21.(6分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=

    (1)求a,k的值及点B的坐标;
    (2)观察图象,请直接写出不等式ax﹣1≥的解集;
    (3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.
    22.(8分)综合与实践﹣﹣﹣折叠中的数学
    在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.
    问题背景:
    在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.
    猜想与证明:
    (1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;
    操作与画图:
    (2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);
    操作与探究:
    (3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN 并延长MN交EF于点O.
    求证:MO⊥EF 且MO平分EF;
    (4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D'所经过的路径的长为   .

    23.(8分)正方形ABCD中,点P为直线AB上一个动点(不与点A,B重合),连接DP,将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N.
    问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为   ;
    题探究:(2)①当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为   ;
    ②当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;
    问题拓展:(3)在(1)(2)的条件下,若AP=,∠DEM=15°,则DM=   .

    24.(10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.

    (1)求证:∠CBF=∠CAB. (2)若AB=5,sin∠CBF=,求BC和BF的长.
    25.(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?

    26.(12分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
    27.(12分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;
    B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;
    C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;
    D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②
    ①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;
    故选D.
    点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
    2、D
    【解析】
    ∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
    解得a=1.故选D. 
    3、B
    【解析】
    首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
    【详解】
    设学校购买文学类图书平均每本书的价格是x元,可得:
    故选B.
    【点睛】
    此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
    4、C
    【解析】
    用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
    ∴线段AB的长小于点A绕点C到B的长度,
    ∴能正确解释这一现象的数学知识是两点之间,线段最短,
    故选C.
    【点睛】
    根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
    5、B
    【解析】
    根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.
    【详解】
    解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上
    则该二次函数的图像与轴有两个交点,且它们分别在轴两侧
    故选B.
    【点睛】
    本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.
    6、C
    【解析】
    根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.
    【详解】
    ∵∠1+∠2=180°
    ∴∠1=180°-∠2
    又∵∠2+∠1=90°
    ∴∠1=90°-∠2
    ∴∠1-∠1=90°,即∠1=90°+∠1.
    故选C.
    【点睛】
    此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.
    7、C
    【解析】
    根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
    【详解】
    解:点,与点关于轴对称的点的坐标是,
    故选:C.
    【点睛】
    本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    8、B
    【解析】
    根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:
    A、不等式两边都减3,不等号的方向不变,正确;
    B、乘以一个负数,不等号的方向改变,错误;
    C、不等式两边都加3,不等号的方向不变,正确;
    D、不等式两边都除以一个正数,不等号的方向不变,正确.
    故选B.
    9、B
    【解析】
    同级运算从左向右依次计算,计算过程中注意正负符号的变化.
    【详解】
    -
    故选B.
    【点睛】
    本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
    10、C
    【解析】
    解:∵,
    ∴,即
    ∴估计在2~3之间
    故选C.
    【点睛】
    本题考查估计无理数的大小.
    11、B
    【解析】
    根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.
    【详解】
    抛物线y=x2﹣4x+m的对称轴为x=2,
    当x<2时,y随着x的增大而减小,
    因为-4<-3<1<2,
    所以y3<y2<y1,
    故选B.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.
    12、B
    【解析】
    如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
    NE的长,EF的长,则可求sin∠AFG的值.
    【详解】
    解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.

    ∵四边形ABCD是菱形,AB=4,∠DAB=60°,
    ∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
    ∴∠HDE=∠DAB=60°,
    ∵点E是CD中点
    ∴DE=CD=1
    在Rt△DEH中,DE=1,∠HDE=60°
    ∴DH=1,HE=
    ∴AH=AD+DH=5
    在Rt△AHE中,AE==1
    ∴AN=NE=,AE⊥GF,AF=EF
    ∵CD=BC,∠DCB=60°
    ∴△BCD是等边三角形,且E是CD中点
    ∴BE⊥CD,
    ∵BC=4,EC=1
    ∴BE=1
    ∵CD∥AB
    ∴∠ABE=∠BEC=90°
    在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
    ∴EF=
    由折叠性质可得∠AFG=∠EFG,
    ∴sin∠EFG= sin∠AFG = ,故选B.
    【点睛】
    本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    点O到点O′所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可.
    【详解】
    解:∵扇形OAB的圆心角为30°,半径为1,
    ∴AB弧长=
    ∴点O到点O′所经过的路径长=
    故答案为:
    【点睛】
    本题考查了弧长公式:.也考查了旋转的性质和圆的性质.
    14、200
    【解析】
    先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.
    【详解】
    解:∵⊙O的直径为1000mm,
    ∴OA=OA=500mm.
    ∵OD⊥AB,AB=800mm,
    ∴AC=400mm,
    ∴OC== =300mm,
    ∴CD=OD-OC=500-300=200(mm).
    答:水的最大深度为200mm.
    故答案为:200
    【点睛】
    本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.
    15、5
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    0.005=5×10-1,
    故答案为:5×10-1.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    16、1
    【解析】
    根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.
    【详解】
    ∵a、b是方程x2-2x-1=0的两个根,
    ∴a2-2a=1,a+b=2,
    ∴a2-a+b=a2-2a+(a+b)=1+2=1.
    故答案为1.
    【点睛】
    本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键.
    17、>
    【解析】
    根据一次函数的性质,k<0时,y随x的增大而减小.
    【详解】
    因为k=﹣<0,所以函数值y随x的增大而减小,
    因为1<4,
    所以,m>n.
    故答案为:>
    【点睛】
    本题考核知识点:一次函数. 解题关键点:熟记一次函数的性质.
    18、1
    【解析】
    ∵四边形ABCD为正方形,
    ∴∠D=∠ABC=90°,AD=AB,
    ∴∠ABE=∠D=90°,
    ∵∠EAF=90°,
    ∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,
    ∴∠DAF=∠BAE,
    ∴△AEB≌△AFD,
    ∴S△AEB=S△AFD,
    ∴它们都加上四边形ABCF的面积,
    可得到四边形AECF的面积=正方形的面积=1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.
    【解析】
    (1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;
    (2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;
    (3)利用二次函数的性质求出w的最大值,以及此时x的值即可.
    【详解】
    (1)设y=kx+b(k≠0),
    根据题意得,
    解得:k=﹣2,b=220,
    ∴y=﹣2x+220(40≤x≤70);
    (2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;
    (3)w=﹣2(x﹣75)2+21,
    ∵40≤x≤70,
    ∴x=70时,w有最大值为w=﹣2×25+21=2050元,
    ∴当销售单价为70元时,该公司日获利最大,为2050元.
    【点睛】
    此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.
    20、 (1) CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.
    【解析】
    (1)如图1中,作AH⊥BC于H.首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;
    (2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM•EB,由此构建函数关系式即可解决问题;
    (3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.想办法证明CM=CN,MN=DN+HM即可解决问题;
    【详解】
    解:(1)如图1中,作AH⊥BC于H.

    ∵CD⊥BC,AD∥BC,
    ∴∠BCD=∠D=∠AHC=90°,
    ∴四边形AHCD是矩形,
    ∵AD=DC=1,
    ∴四边形AHCD是正方形,
    ∴AH=CH=CD=1,
    ∵∠B=45°,
    ∴AH=BH=1,BC=2,
    ∵CM=BC=,CM∥AD,
    ∴=,
    ∴=,
    ∴CF=1.
    (2)如图1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,
    ∵∠AEM=∠AEB,∠EAM=∠B,
    ∴△EAM∽△EBA,
    ∴=,
    ∴AE2=EM•EB,
    ∴1+(1+y)2=(x+y)(y+2),
    ∴y=,
    ∵2﹣2x≥0,
    ∴0≤x≤1.
    (3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.

    则△ADN≌△AHG,△MAN≌△MAG,
    ∴MN=MG=HM+GH=HM+DN,
    ∵△ABM∽△EFN,
    ∴∠EFN=∠B=45°,
    ∴CF=CE,
    ∵四边形AHCD是正方形,
    ∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,
    ∴△AHE≌△ADF,
    ∴∠AEH=∠AFD,
    ∵∠AEH=∠DAN,∠AFD=∠HAM,
    ∴∠HAM=∠DAN,
    ∴△ADN≌△AHM,
    ∴DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,
    ∴x+x=1,
    ∴x=﹣1,
    ∴CM=2﹣.
    【点睛】
    本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明△EAM∽△EBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.
    21、(1)a= ,k=3, B(-,-2) (2) ﹣≤x<0或x≥3;(3) (0,)或(0,0)
    【解析】
    1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;
    (2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;
    (3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相 似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.
    【详解】
    解:(1)
    过A作AE⊥x轴,交x轴于点E,
    在Rt△AOE中,OA=,tan∠AOC=,
    设AE=x,则OE=3x,
    根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,
    解得:x=1或x=﹣1(舍去),
    ∴OE=3,AE=1,即A(3,1),
    将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,
    将A坐标代入反比例解析式得:1=,即k=3,
    联立一次函数与反比例解析式得:,
    消去y得: x﹣1=,
    解得:x=﹣或x=3,
    将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);
    (2)由A(3,1),B(﹣,﹣2),
    根据图象得:不等式x﹣1≥的解集为﹣≤x<0或x≥3;
    (3)显然P与O重合时,△PDC∽△ODC;
    当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,
    ∵∠PCD=∠COD=90°,∠PCD=∠CDO,
    ∴△PDC∽△CDO,
    ∵∠PCO+∠CPO=90°,
    ∴∠DCO=∠CPO,
    ∵∠POC=∠COD=90°,
    ∴△PCO∽△CDO,
    ∴=,
    对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,
    ∴C(,0),D(0,﹣1),即OC=,OD=1,
    ∴=,即OP=,
    此时P坐标为(0,),
    综上,满足题意P的坐标为(0,)或(0,0).
    【点睛】
    此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.
    22、(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)
    【解析】
    (1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;
    (2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;
    (3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF 且MO平分EF;
    (4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.
    【详解】
    (1)△MEF是等腰三角形.
    理由:∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠MFE=∠CEF,
    由折叠可得,∠MEF=∠CEF,
    ∴∠MFE=∠MEF,
    ∴ME=MF,
    ∴△MEF是等腰三角形.
    (2)折痕EF和折叠后的图形如图所示:

    (3)如图,

    ∵FD=BE,
    由折叠可得,D'F=DF,
    ∴BE=D'F,
    在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,
    ∴∠C'QN=∠APN,
    ∵∠C'QN=∠BQE,∠APN=∠D'PF,
    ∴∠BQE=∠D'PF,
    在△BEQ和△D'FP中,

    ∴△BEQ≌△D'FP(AAS),
    ∴PF=QE,
    ∵四边形ABCD是矩形,
    ∴AD=BC,
    ∴AD﹣FD=BC﹣BE,
    ∴AF=CE,
    由折叠可得,C'E=EC,
    ∴AF=C'E,
    ∴AP=C'Q,
    在△NC'Q和△NAP中,

    ∴△NC'P≌△NAP(AAS),
    ∴AN=C'N,
    在Rt△MC'N和Rt△MAN中,

    ∴Rt△MC'N≌Rt△MAN(HL),
    ∴∠AMN=∠C'MN,
    由折叠可得,∠C'EF=∠CEF,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠AFE=∠FEC,
    ∴∠C'EF=∠AFE,
    ∴ME=MF,
    ∴△MEF是等腰三角形,
    ∴MO⊥EF 且MO平分EF;
    (4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:

    故其长为L=.
    故答案为.
    【点睛】
    此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.
    23、 (1) DM=AD+AP ;(2) ①DM=AD﹣AP ; ②DM=AP﹣AD ;(3) 3﹣或﹣1.
    【解析】
    (1)根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;
    (2)①根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;
    ②根据正方形的性质和全等三角形的判定和性质得出△ADP≌△PFN,进而解答即可;
    (3)分两种情况利用勾股定理和三角函数解答即可.
    【详解】
    (1)DM=AD+AP,理由如下:
    ∵正方形ABCD,
    ∴DC=AB,∠DAP=90°,
    ∵将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,
    ∴DP=PE,∠PNE=90°,∠DPE=90°,
    ∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,
    ∴∠DAP=∠EPN,
    在△ADP与△NPE中,

    ∴△ADP≌△NPE(AAS),
    ∴AD=PN,AP=EN,
    ∴AN=DM=AP+PN=AD+AP;
    (2)①DM=AD﹣AP,理由如下:
    ∵正方形ABCD,
    ∴DC=AB,∠DAP=90°,
    ∵将DP绕点P旋转90°得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N,
    ∴DP=PE,∠PNE=90°,∠DPE=90°,
    ∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,
    ∴∠DAP=∠EPN,
    在△ADP与△NPE中,

    ∴△ADP≌△NPE(AAS),
    ∴AD=PN,AP=EN,
    ∴AN=DM=PN﹣AP=AD﹣AP;
    ②DM=AP﹣AD,理由如下:
    ∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,
    ∴∠DAP=∠PEN,
    又∵∠A=∠PNE=90°,DP=PE,
    ∴△DAP≌△PEN,
    ∴AD=PN,
    ∴DM=AN=AP﹣PN=AP﹣AD;
    (3)有两种情况,如图2,DM=3﹣,如图3,DM=﹣1;
    ①如图2:∵∠DEM=15°,
    ∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,
    在Rt△PAD中AP=,AD==3,
    ∴DM=AD﹣AP=3﹣;
    ②如图3:∵∠DEM=15°,
    ∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,
    在Rt△PAD中AP=,AD=AP•tan30°==1,
    ∴DM=AP﹣AD=﹣1.
    故答案为;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.
    【点睛】
    此题是四边形综合题,主要考查了正方形的性质全等三角形的判定和性质,分类讨论的数学思想解决问题,判断出△ADP≌△PFN是解本题的关键.
    24、(1)证明略;(2)BC=,BF=.
    【解析】
    试题分析:(1)连结AE.有AB是⊙O的直径可得∠AEB=90°再有BF是⊙O的切线可得BF⊥AB,利用同角的余角相等即可证明;
    (2)在Rt△ABE中有三角函数可以求出BE,又有等腰三角形的三线合一可得BC=2BE,
    过点C作CG⊥AB于点G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后证出△AGC∽△ABF有相似的性质求出BF即可.
    试题解析:

    (1)证明:连结AE.∵AB是⊙O的直径, ∴∠AEB=90°,∴∠1+∠2=90°.
    ∵BF是⊙O的切线,∴BF⊥AB, ∴∠CBF +∠2=90°.∴∠CBF =∠1.
    ∵AB=AC,∠AEB=90°, ∴∠1=∠CAB.
    ∴∠CBF=∠CAB.

    (2)解:过点C作CG⊥AB于点G.∵sin∠CBF=,∠1=∠CBF, ∴sin∠1=.
    ∵∠AEB=90°,AB=5. ∴BE=AB·sin∠1=.
    ∵AB=AC,∠AEB=90°, ∴BC=2BE=.
    在Rt△ABE中,由勾股定理得.
    ∴sin∠2=,cos∠2=.
    在Rt△CBG中,可求得GC=4,GB=2. ∴AG=3.
    ∵GC∥BF, ∴△AGC∽△ABF. ∴,
    ∴.
    考点:切线的性质,相似的性质,勾股定理.
    25、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【解析】
    【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
    (2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
    【详解】(1)设该一次函数解析式为y=kx+b,
    将(150,45)、(0,1)代入y=kx+b中,得
    ,解得:,
    ∴该一次函数解析式为y=﹣x+1;
    (2)当y=﹣x+1=8时,
    解得x=520,
    即行驶520千米时,油箱中的剩余油量为8升.
    530﹣520=10千米,
    油箱中的剩余油量为8升时,距离加油站10千米,
    ∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
    【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
    26、(1);(2)
    【解析】
    (1)根据可能性只有男孩或女孩,直接得到其概率;
    (2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.
    【详解】
    解:(1)(1)第二个孩子是女孩的概率=;
    故答案为;
    (2)画树状图为:

    共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,
    所以至少有一个孩子是女孩的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    27、答案见解析
    【解析】
    试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.
    试题解析:连接BD,
    ∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,
    ∴MN∥BD,MN= BD,
    ∵ ,
    ∴ .

    相关试卷

    2023年江苏省盐城市初级中学中考二模数学模拟试题(原卷版+解析版): 这是一份2023年江苏省盐城市初级中学中考二模数学模拟试题(原卷版+解析版),文件包含精品解析2023年江苏省盐城市初级中学中考二模数学模拟试题原卷版docx、精品解析2023年江苏省盐城市初级中学中考二模数学模拟试题解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    2023年江苏省盐城市建湖县中考数学一模试卷(含解析): 这是一份2023年江苏省盐城市建湖县中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年江苏省盐城市东台实验中学中考数学模拟预测题含解析: 这是一份2022年江苏省盐城市东台实验中学中考数学模拟预测题含解析,共20页。试卷主要包含了下列各式计算正确的是,不等式3x<2等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map