2022届广西浦北县市级名校中考数学模拟预测题含解析
展开
这是一份2022届广西浦北县市级名校中考数学模拟预测题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,如图所示的几何体的俯视图是,若x>y,则下列式子错误的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是( )
A.155° B.145° C.135° D.125°
2.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
3.如图所示的几何体的主视图正确的是( )
A. B. C. D.
4.已知点、都在反比例函数的图象上,则下列关系式一定正确的是( )
A. B. C. D.
5.若(x﹣1)0=1成立,则x的取值范围是( )
A.x=﹣1 B.x=1 C.x≠0 D.x≠1
6.如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是
A. B. C. D.
7.如图所示的几何体的俯视图是( )
A. B. C. D.
8.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )
A.25° B.50° C.60° D.30°
9.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是( )
A.0 B.0.8 C.2.5 D.3.4
10.若x>y,则下列式子错误的是( )
A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.
11.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A.﹣5 B.﹣3 C.3 D.1
12.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于( )
A. B.2 C.4 D.3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
14.关于的一元二次方程有两个相等的实数根,则的值等于_____.
15.不等式-2x+3>0的解集是___________________
16.如图,在△ABC中,AB=AC,D、E、F分别为AB、BC、AC的中点,则下列结论:①△ADF≌△FEC;②四边形ADEF为菱形;③.其中正确的结论是____________.(填写所有正确结论的序号)
17.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是 .
18.方程的解是 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.
20.(6分)计算:÷+8×2﹣1﹣(+1)0+2•sin60°.
21.(6分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)
22.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
23.(8分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.
24.(10分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
25.(10分)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴为=–1,P为抛物线上第二象限的一个动点.
(1)求抛物线的解析式并写出其顶点坐标;
(2)当点P的纵坐标为2时,求点P的横坐标;
(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.
26.(12分)如图,在四边形ABCD中,∠A=∠BCD=90°,,CE⊥AD于点E.
(1)求证:AE=CE;
(2)若tanD=3,求AB的长.
27.(12分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
解:∵
∴
∵EO⊥AB,
∴
∴
故选D.
2、C
【解析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
共用去:(2a+3b)元.
故选C.
【点睛】
本题主要考查列代数式,总价=单价乘数量.
3、D
【解析】
主视图是从前向后看,即可得图像.
【详解】
主视图是一个矩形和一个三角形构成.故选D.
4、A
【解析】
分析:根据反比例函数的性质,可得答案.
详解:由题意,得
k=-3,图象位于第二象限,或第四象限,
在每一象限内,y随x的增大而增大,
∵3<6,
∴x1<x2<0,
故选A.
点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.
5、D
【解析】
试题解析:由题意可知:x-1≠0,
x≠1
故选D.
6、C
【解析】
根据向下平移,纵坐标相减,即可得到答案.
【详解】
∵抛物线y=x2+2向下平移1个单位,
∴抛物线的解析式为y=x2+2-1,即y=x2+1.
故选C.
7、D
【解析】
试题分析:根据俯视图的作法即可得出结论.
从上往下看该几何体的俯视图是D.故选D.
考点:简单几何体的三视图.
8、A
【解析】
如图,∵∠BOC=50°,
∴∠BAC=25°,
∵AC∥OB,
∴∠OBA=∠BAC=25°,
∵OA=OB,
∴∠OAB=∠OBA=25°.
故选A.
9、D
【解析】
如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判断;
【详解】
如图,点O的运动轨迹是图在黄线,
作CH⊥BD于点H,
∵六边形ABCDE是正六边形,
∴∠BCD=120º,
∴∠CBH=30º,
∴BH=cos30 º·BC=,
∴BD=.
∵DK=,
∴BK=,
点B,O间的距离d的最小值为0,最大值为线段BK=,
∴0≤d≤,即0≤d≤3.1,
故点B,O间的距离不可能是3.4,
故选:D.
【点睛】
本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.
10、B
【解析】
根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:
A、不等式两边都减3,不等号的方向不变,正确;
B、乘以一个负数,不等号的方向改变,错误;
C、不等式两边都加3,不等号的方向不变,正确;
D、不等式两边都除以一个正数,不等号的方向不变,正确.
故选B.
11、D
【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
∴1+m=3、1﹣n=2,
解得:m=2、n=﹣1,
所以m+n=2﹣1=1,
故选D.
【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.
12、B
【解析】
【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.
【详解】点C在双曲线y=上,AC∥y轴,BC∥x轴,
设C(a,),则B(3a,),A(a,),
∵AC=BC,
∴﹣=3a﹣a,
解得a=1,(负值已舍去)
∴C(1,1),B(3,1),A(1,3),
∴AC=BC=2,
∴Rt△ABC中,AB=2,
故选B.
【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、一
【解析】
试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限,
∴k﹣1<0且k+1<0, 解得:k<﹣1,
∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限
考点:一次函数的性质
14、
【解析】
分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.
详解:由题意得:△= ,∴ ,∴,即a(a-1)=1, ∴a-1=,
故答案为-3.
点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0, 方程有两个不相等的实数根;当△
相关试卷
这是一份浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某排球队名场上队员的身高等内容,欢迎下载使用。
这是一份广西壮族自治区北海市市级名校2022年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,把一副三角板如图,的倒数是,如图所示,,结论等内容,欢迎下载使用。
这是一份2022届山东新泰莆田市级名校中考数学模拟预测题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,若△÷,则“△”可能是,下列运算正确的是等内容,欢迎下载使用。

