广西壮族自治区北海市市级名校2022年中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一个几何体的三视图如图所示,该几何体是
A.直三棱柱 B.长方体 C.圆锥 D.立方体
2.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
鞋的尺码/cm
23
23.5
24
24.5
25
销售量/双
1
3
3
6
2
则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )
A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
3.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( )
A. cm B.2 cm C.2cm D. cm
4.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A.DE=EB B.DE=EB C.DE=DO D.DE=OB
5.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为( )
A.6 B.9 C.10 D.12
6.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )
A. B. C. D.4
7.的倒数是( )
A.﹣ B.2 C.﹣2 D.
8.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )
A.3:1 B.4:1 C.5:2 D.7:2
9.如图所示,,结论:①;②;③;④,其中正确的是有( )
A.1个 B.2个 C.3个 D.4个
10.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
二、填空题(共7小题,每小题3分,满分21分)
11.因式分解:________.
12.分解因式:a3-a=
13.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则______.
14.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.
15.已知式子有意义,则x的取值范围是_____
16.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.
17.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.
三、解答题(共7小题,满分69分)
18.(10分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
品名
猕猴桃
芒果
批发价元千克
20
40
零售价元千克
26
50
他购进的猕猴桃和芒果各多少千克?
如果猕猴桃和芒果全部卖完,他能赚多少钱?
19.(5分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;
将条形统计图补充完整;
该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.
20.(8分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若x1,x2是这个方程的两个实数根,求的值;
(3)根据(2)的结果你能得出什么结论?
21.(10分)已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.
(1)求抛物线的顶点C的坐标及A,B两点的坐标;
(2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;
(3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.
22.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.
23.(12分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.
图 ①
(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.
图 ②
24.(14分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).
(1)求该反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)若M(x1,y1),N(x2,y2)是反比例函数y=(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据三视图的形状可判断几何体的形状.
【详解】
观察三视图可知,该几何体是直三棱柱.
故选A.
本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.
2、A
【解析】
【分析】根据众数和中位数的定义进行求解即可得.
【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,
这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,
故选A.
【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.
3、B
【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
【详解】
解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
故选择B.
【点睛】
本题考查了圆锥的概念和弧长的计算.
4、D
【解析】
解:连接EO.
∴∠B=∠OEB,
∵∠OEB=∠D+∠DOE,∠AOB=3∠D,
∴∠B+∠D=3∠D,
∴∠D+∠DOE+∠D=3∠D,
∴∠DOE=∠D,
∴ED=EO=OB,
故选D.
5、B
【解析】
首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.
【详解】
解:如图,连接OA、OB,
,
∵∠ACB=30°,
∴∠AOB=2∠ACB=60°,
∵OA=OB,
∴△AOB为等边三角形,
∵⊙O的半径为6,
∴AB=OA=OB=6,
∵点E,F分别是AC、BC的中点,
∴EF=AB=3,
要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,
∵当弦GH是圆的直径时,它的最大值为:6×2=12,
∴GE+FH的最大值为:12﹣3=1.
故选:B.
【点睛】
本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.
6、A
【解析】
试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
若旋转角度为11°,则∠ACO=30°+11°=41°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1=.
故选A.
考点: 1.旋转;2.勾股定理.
7、B
【解析】
根据乘积是1的两个数叫做互为倒数解答.
【详解】
解:∵×1=1
∴的倒数是1.
故选B.
【点睛】
本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
8、A
【解析】
利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.
【详解】
连接DO,交AB于点F,
∵D是的中点,
∴DO⊥AB,AF=BF,
∵AB=8,
∴AF=BF=4,
∴FO是△ABC的中位线,AC∥DO,
∵BC为直径,AB=8,AC=6,
∴BC=10,FO=AC=1,
∴DO=5,
∴DF=5-1=2,
∵AC∥DO,
∴△DEF∽△CEA,
∴,
∴==1.
故选:A.
【点睛】
此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.
9、C
【解析】
根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.
【详解】
解:如图:
在△AEB和△AFC中,有
,
∴△AEB≌△AFC;(AAS)
∴∠FAM=∠EAN,
∴∠EAN-∠MAN=∠FAM-∠MAN,
即∠EAM=∠FAN;(故③正确)
又∵∠E=∠F=90°,AE=AF,
∴△EAM≌△FAN;(ASA)
∴EM=FN;(故①正确)
由△AEB≌△AFC知:∠B=∠C,AC=AB;
又∵∠CAB=∠BAC,
∴△ACN≌△ABM;(故④正确)
由于条件不足,无法证得②CD=DN;
故正确的结论有:①③④;
故选C.
【点睛】
此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.
10、C
【解析】
可以用物理的思维来解决这道题.
【详解】
未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
【点睛】
理解转折点的含义是解决这一类题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、n(m+2)(m﹣2)
【解析】
先提取公因式 n,再利用平方差公式分解即可.
【详解】
m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..
故答案为n(m+2)(m﹣2).
【点睛】
本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键
12、
【解析】
a3-a=a(a2-1)=
13、1.
【解析】
根据两点间的距离公式可求m的值.
【详解】
依题意有,
解得,
故答案为:1.
【点睛】
考查了坐标确定位置,正确理解实际距离的定义是解题关键.
14、x≥1
【解析】
把y=2代入y=x+1,得x=1,
∴点P的坐标为(1,2),
根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,
因而不等式x+1≥mx+n的解集是:x≥1,
故答案为x≥1.
【点睛】
本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
15、x≤1且x≠﹣1.
【解析】
根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.
故答案为x≤1且x≠﹣1.
16、 (4,2),
【解析】
由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
【详解】
解:点、、在直线上,的横坐标是1,
,
点,,在直线上,
,,
,,
第1个正方形的面积为:;
,
,,,
第2个正方形的面积为:;
,
,,
第3个正方形的面积为:;
,
第n个正方形的面积为:.
故答案为,.
【点睛】
本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
17、60°
【解析】
试题解析:∵∠ACB=90°,∠ABC=30°,
∴∠A=90°-30°=60°,
∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
∴AC=A′C,
∴△A′AC是等边三角形,
∴∠ACA′=60°,
∴旋转角为60°.
故答案为60°.
三、解答题(共7小题,满分69分)
18、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.
【解析】
设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;
根据利润销售收入成本,即可求出结论.
【详解】
设购进猕猴桃x千克,购进芒果y千克,
根据题意得:,
解得:.
答:购进猕猴桃20千克,购进芒果30千克.
元.
答:如果猕猴桃和芒果全部卖完,他能赚420元钱.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.
19、(1)100,108°;(2)答案见解析;(3)600人.
【解析】
(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.
【详解】
解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,
∴此次共抽查了:20÷20%=100人.
喜欢用QQ沟通所占比例为:,
∴QQ的扇形圆心角的度数为:360°×=108°.
(2)喜欢用短信的人数为:100×5%=5人
喜欢用微信的人数为:100-20-5-30-5=40
补充图形,如图所示:
(3)喜欢用微信沟通所占百分比为:×100%=40%.
∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
20、(1)k>-1;(2)2;(3)k>-1时,的值与k无关.
【解析】
(1)由题意得该方程的根的判别式大于零,列出不等式解答即可.
(2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.
(3)结合(1)和(2)结论可见,k>-1时,的值为定值2,与k无关.
【详解】
(1)∵方程有两个不等实根,
∴△>0,
即4+4k>0,∴k>-1
(2)由根与系数关系可知
x1+x2=-2 ,x1x2=-k,
∴
(3)由(1)可知,k>-1时,
的值与k无关.
【点睛】
本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.
21、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.
【解析】
分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标.
(Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在△DAC内,求t的取值范围.
(Ⅲ)直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(﹣2,0),F(0,2),易得CF⊥AB,△PAB的面积是△ABC面积的2倍,所以AB•PM=AB•CF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在抛物线y=x2﹣1x+9上,联立方程从而可求出m、n的值.
详解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴顶点坐标为(2,0).
联立,
解得:或;
(II)由题意可知:新抛物线的顶点坐标为(2﹣t,1),设直线AC的解析式为y=kx+b
将A(1,4),C(2,0)代入y=kx+b中,∴,
解得:,
∴直线AC的解析式为y=﹣2x+1.
当点E在直线AC上时,﹣2(2﹣t)+1=1,解得:t=.
当点E在直线AD上时,(2﹣t)+2=1,解得:t=5,
∴当点E在△DAC内时,<t<5;
(III)如图,直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G.
由直线y=x+2与x轴交于点D,与y轴交于点F,
得D(﹣2,0),F(0,2),∴OD=OF=2.
∵∠FOD=90°,∴∠OFD=∠ODF=45°.
∵OC=OF=2,∠FOC=90°,
∴CF==2,∠OFC=∠OCF=45°,
∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.
∵△PAB的面积是△ABC面积的2倍,∴AB•PM=AB•CF,
∴PM=2CF=1.
∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.
在Rt△PGM中,sin∠PGM=, ∴PG===3.
∵点G在直线y=x+2上,P(m,n), ∴G(m,m+2).
∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.
∵P(m,n)在抛物线y=x2﹣1x+9上,
∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.
∵﹣2<m<1,∴m=不合题意,舍去,∴m=,∴n=m+4=.
点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.
22、(1)证明见解析;(2).
【解析】
(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;
(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.
解:(1)∵AB=AC,∴∠B=∠C.
∵∠APD=∠B,∴∠APD=∠B=∠C.
∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,
∴∠BAP=∠DPC,
∴△ABP∽△PCD,
∴,
∴AB•CD=CP•BP.
∵AB=AC,
∴AC•CD=CP•BP;
(2)∵PD∥AB,∴∠APD=∠BAP.
∵∠APD=∠C,∴∠BAP=∠C.
∵∠B=∠B,
∴△BAP∽△BCA,
∴.
∵AB=10,BC=12,
∴,
∴BP=.
“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.
23、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
【解析】
(1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
【详解】
(1)(1)当AB是过P点的直径时,AB最长=2×2=4;
当AB⊥OP时,AB最短, AP=
∴AB=2
(2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
再做△AEC的外接圆,
当D与E重合时,S△ADC最大
故此时四边形ABCD的面积最大,
∵∠ABC=90°,AB=80,BC=60
∴AC=
∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
S△ADC=
S△ABC=
∴四边形ABCD面积最大值为(2500+2400)平方米.
【点睛】
此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
24、 (1)反比例函数的解析式为y=﹣;一次函数的解析式为y=﹣x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限.
【解析】
(1)把A(﹣2,3)代入y=,可得m=﹣2×3=﹣6,
∴反比例函数的解析式为y=﹣;
把点B(6,n)代入,可得n=﹣1,
∴B(6,﹣1).
把A(﹣2,3),B(6,﹣1)代入y=kx+b,可得,
解得,
∴一次函数的解析式为y=﹣x+2;
(2)∵y=﹣x+2,令y=0,则x=4,
∴C(4,0),即OC=4,
∴△AOB的面积=×4×(3+1)=8;
(3)∵反比例函数y=﹣的图象位于二、四象限,
∴在每个象限内,y随x的增大而增大,
∵x1<x2,y1<y2,
∴M,N在相同的象限,
∴点M、N在第二象限,或点M、N在第四象限.
【点睛】
本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.
浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析: 这是一份浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某排球队名场上队员的身高等内容,欢迎下载使用。
陕西宝鸡渭滨区市级名校2022年中考数学模拟预测题含解析: 这是一份陕西宝鸡渭滨区市级名校2022年中考数学模拟预测题含解析,共17页。试卷主要包含了如图,反比例函数,四组数中等内容,欢迎下载使用。
2022届山东新泰莆田市级名校中考数学模拟预测题含解析: 这是一份2022届山东新泰莆田市级名校中考数学模拟预测题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,若△÷,则“△”可能是,下列运算正确的是等内容,欢迎下载使用。