2021-2022学年广西壮族自治区钦州市浦北县市级名校中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.若,代数式的值是
A.0 B. C.2 D.
2.如图,在中, ,将折叠,使点落在边上的点处, 为折痕,若,则的值为( )
A. B. C. D.
3.在代数式 中,m的取值范围是( )
A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠0
4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )
A. B. C. D.
5.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
h | 0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是( )
A.1 B.2 C.3 D.4
6.不等式3x<2(x+2)的解是( )
A.x>2 B.x<2 C.x>4 D.x<4
7.下列命题中,真命题是( )
A.对角线互相垂直且相等的四边形是正方形
B.等腰梯形既是轴对称图形又是中心对称图形
C.圆的切线垂直于经过切点的半径
D.垂直于同一直线的两条直线互相垂直
8.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是( )
A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.内含
9.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:
下列说法正确的是( )
A.这10名同学体育成绩的中位数为38分
B.这10名同学体育成绩的平均数为38分
C.这10名同学体育成绩的众数为39分
D.这10名同学体育成绩的方差为2
10.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
A.a=2,b=3 B.a=-2,b=-3
C.a=-2,b=3 D.a=2,b=-3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了______结果保留根号.
12.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
13.分解因式:2x3﹣4x2+2x=_____.
14.对于一元二次方程,根的判别式中的表示的数是__________.
15.化简的结果等于__.
16.计算:2a×(﹣2b)=_____.
三、解答题(共8题,共72分)
17.(8分)先化简(-a+1)÷,并从0,-1,2中选一个合适的数作为a的值代入求值.
18.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.
小明和小刚都在本周日上午去游玩的概率为________;
求他们三人在同一个半天去游玩的概率.
19.(8分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:
(1)∠C= °;
(2)此时刻船与B港口之间的距离CB的长(结果保留根号).
20.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
21.(8分)观察下列各式:
①
②
③
由此归纳出一般规律__________.
22.(10分)计算:.化简:.
23.(12分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,求证:DG=DA;
(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
24.综合与实践:
概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n],: .
问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得到△AB′C′,使点 B,C,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.
拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换 得到△AB′C′,则四边形 ABB′C′为正方形
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
由可得,整体代入到原式即可得出答案.
【详解】
解:,
,
则原式.
故选:D.
【点睛】
本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键.
2、B
【解析】
根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.
【详解】
解:由折叠性质可知:AE=DE=3
∴CE=AC-AE=4-3=1
在Rt△CED中,CD=
故选:B
【点睛】
本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.
3、D
【解析】
根据二次根式有意义的条件即可求出答案.
【详解】
由题意可知:
解得:m≤3且m≠0
故选D.
【点睛】
本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.
4、A
【解析】
【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.
【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,
只有A选项符合题意,
故选A.
【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.
5、B
【解析】
试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.
6、D
【解析】
不等式先展开再移项即可解答.
【详解】
解:不等式3x<2(x+2),
展开得:3x<2x+4,
移项得:3x-2x<4,
解之得:x<4.
故答案选D.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
7、C
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
解答:解:A、错误,例如对角线互相垂直的等腰梯形;
B、错误,等腰梯形是轴对称图形不是中心对称图形;
C、正确,符合切线的性质;
D、错误,垂直于同一直线的两条直线平行.
故选C.
8、A
【解析】
直接利用点与圆的位置关系进而得出答案.
【详解】
解:∵⊙O的半径为5cm,OA=4cm,
∴点A与⊙O的位置关系是:点A在⊙O内.
故选A.
【点睛】
此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.
9、C
【解析】
试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
平均数==38.4
方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
∴选项A,B、D错误;
故选C.
考点:方差;加权平均数;中位数;众数.
10、B
【解析】
分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
详解:(x+1)(x-3)
=x2-3x+x-3
=x2-2x-3
所以a=2,b=-3,
故选B.
点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据题意画出图形,进而利用锐角三角函数关系得出答案.
【详解】
解:如图1所示:
过点A作于点D,
由题意可得:,
则是等边三角形,
故BC,
则,
如图2所示:
过点A作于点E,
由题意可得:,
则是等腰直角三角形,,
则,
故梯子顶端离地面的高度AD下降了
故答案为:.
【点睛】
此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键.
12、1
【解析】
设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
【详解】
设购买篮球x个,则购买足球个,
根据题意得:,
解得:.
为整数,
最大值为1.
故答案为1.
【点睛】
本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
13、2x(x-1)2
【解析】
2x3﹣4x2+2x=
14、-5
【解析】
分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.
【详解】
解:表示一元二次方程的一次项系数.
【点睛】
此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.
15、.
【解析】
先通分变为同分母分式,然后根据分式的减法法则计算即可.
【详解】
解:原式
.
故答案为:.
【点睛】
此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.
16、﹣4ab
【解析】
根据单项式与单项式的乘法解答即可.
【详解】
2a×(﹣2b)=﹣4ab.
故答案为﹣4ab.
【点睛】
本题考查了单项式的乘法,关键是根据单项式的乘法法则解答.
三、解答题(共8题,共72分)
17、1.
【解析】
试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.
试题解析:原式===;
当a=0时,原式=1.
考点:分式的化简求值.
18、(1);(2)
【解析】
(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;
(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.
【详解】
解:(1)根据题意,画树状图如图:
由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;
(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,
∴他们三人在同一个半天去游玩的概率为=.
答:他们三人在同一个半天去游玩的概率是.
【点睛】
本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
19、(1)60;(2)
【解析】
(1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;
(2)作AD⊥BC交BC于点D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根据BC=BD+CD即可求解.
解:(1)如图所示,
∵∠EAB=30°,AE∥BF,
∴∠FBA=30°,
又∠FBC=75°,
∴∠ABC=45°,
∵∠BAC=∠BAE+∠CAE=75°,
∴∠C=60°.
故答案为60;
(2)如图,作AD⊥BC于D,
在Rt△ABD中,
∵∠ABD=45°,AB=60,
∴AD=BD=30.
在Rt△ACD中,
∵∠C=60°,AD=30,
∴tanC=,
∴CD==10,
∴BC=BD+CD=30+10.
答:该船与B港口之间的距离CB的长为(30+10)海里.
20、(1)1 ;(1) y=x1﹣4x+1或y=x1+6x+1.
【解析】
(1)解方程求出点A的坐标,根据勾股定理计算即可;
(1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.
【详解】
解:(1)由x1﹣4=0得,x1=﹣1,x1=1,
∵点A位于点B的左侧,
∴A(﹣1,0),
∵直线y=x+m经过点A,
∴﹣1+m=0,
解得,m=1,
∴点D的坐标为(0,1),
∴AD==1;
(1)设新抛物线对应的函数表达式为:y=x1+bx+1,
y=x1+bx+1=(x+)1+1﹣,
则点C′的坐标为(﹣,1﹣),
∵CC′平行于直线AD,且经过C(0,﹣4),
∴直线CC′的解析式为:y=x﹣4,
∴1﹣=﹣﹣4,
解得,b1=﹣4,b1=6,
∴新抛物线对应的函数表达式为:y=x1﹣4x+1或y=x1+6x+1.
【点睛】
本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.
21、xn+1-1
【解析】
试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.
试题解析:(x﹣1)(++…x+1)=.
故答案为.
考点:平方差公式.
22、(1)5;(2)-3x+4
【解析】
(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.
(2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.
【详解】
(1)解:原式
(2)解:原式
【点睛】
本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.
23、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
【解析】
(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
OEG=90°,即可得到结论;
(1)根据含30°的直角三角形的性质证明即可;
(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
【详解】
解:(1)连接OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切线;
(1)∵∠AED=90°,∠A=30°,
∴ED=AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG=DA;
(3)∵AD是⊙O的直径,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵阴影部分的面积
解得:r1=4,即r=1,
即⊙O的半径的长为1.
【点睛】
本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
24、(1);(2);(3).
【解析】
(1)根据定义可知△ABC∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;
(2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;
(3)根据四边形 ABB′C′为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案.
【详解】
解:(1)∵△AB′C′的边长变为了△ABC的n倍,
∴△ABC∽△AB′C′,
∴,
故答案为:.
(2)四边形是矩形,
∴.
.
在中,,
.
.
.
(3)若四边形 ABB′C′为正方形,
则,,
∴,
∴,
又∵在△ABC中,AB=,
∴,
∴
故答案为:.
【点睛】
本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.
浙江省江北区市级名校2021-2022学年中考猜题数学试卷含解析: 这是一份浙江省江北区市级名校2021-2022学年中考猜题数学试卷含解析,共19页。
陕西省三原县市级名校2021-2022学年中考猜题数学试卷含解析: 这是一份陕西省三原县市级名校2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,已知,则的值为,下列命题正确的是等内容,欢迎下载使用。
2022届广西壮族自治区钦州市浦北县市级名校中考三模数学试题含解析: 这是一份2022届广西壮族自治区钦州市浦北县市级名校中考三模数学试题含解析,共26页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。