2022届安徽省宿州砀山县联考中考数学适应性模拟试题含解析
展开
这是一份2022届安徽省宿州砀山县联考中考数学适应性模拟试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,在中,,,,则的值是,下列函数中,二次函数是,估计﹣2的值应该在,﹣的绝对值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.cos30°=( )
A. B. C. D.
2.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是
A. B. C. D.
3.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A.120元 B.100元 C.80元 D.60元
4.在中,,,,则的值是( )
A. B. C. D.
5.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2﹣4x+m的图象上的三点,则y1,y2,y3的大小关系是( )
A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y2
6.下列函数中,二次函数是( )
A.y=﹣4x+5 B.y=x(2x﹣3)
C.y=(x+4)2﹣x2 D.y=
7.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,则AB的长为( )
A. B. C.1 D.
8.估计﹣2的值应该在( )
A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
9.﹣的绝对值是( )
A.﹣ B. C.﹣2 D.2
10.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()
A.180人 B.117人 C.215人 D.257人
11.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
其中合理的是( )
A.① B.② C.①② D.①③
12.如图,从圆外一点引圆的两条切线,,切点分别为,,如果, ,那么弦AB的长是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算(x4)2的结果等于_____.
14.正六边形的每个内角等于______________°.
15.分解因式:8a3﹣8a2+2a=_____.
16.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.
17.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_____
18.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.
20.(6分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?
21.(6分)如图,抛物线与x轴交于点A,B,与轴交于点C,过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD,已知点A坐标为(-1,0).
求该抛物线的解析式;求梯形COBD的面积.
22.(8分)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)
23.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
24.(10分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=.
(1)求证:△AMC∽△EMB;
(2)求EM的长;
(3)求sin∠EOB的值.
25.(10分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,
(1)求点A的坐标;
(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.
26.(12分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根
27.(12分)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
直接根据特殊角的锐角三角函数值求解即可.
【详解】
故选C.
【点睛】
考点:特殊角的锐角三角函数
点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.
2、D
【解析】
圆锥的侧面积=×80π×90=3600π(cm2) .
故选D.
3、C
【解析】
解:设该商品的进价为x元/件,
依题意得:(x+20)÷=200,解得:x=1.
∴该商品的进价为1元/件.
故选C.
4、D
【解析】
首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.
【详解】
∵∠C=90°,BC=1,AB=4,
∴,
∴,
故选:D.
【点睛】
本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.
5、B
【解析】
根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.
【详解】
抛物线y=x2﹣4x+m的对称轴为x=2,
当x
相关试卷
这是一份2024年安徽省宿州市砀山县中考二模数学试题(原卷版+解析版),文件包含2024年安徽省宿州市砀山县中考二模数学试题原卷版docx、2024年安徽省宿州市砀山县中考二模数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份2024年安徽省宿州市砀山县中考二模数学试题,共10页。
这是一份安徽省宿州砀山县联考2023-2024学年数学八上期末达标检测模拟试题含答案,共10页。试卷主要包含了与是同类二次根式的是等内容,欢迎下载使用。