


2021-2022学年内蒙古呼和浩特回民中学毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,下列各数中,数轴上点A表示的可能是( )
A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根
2.有下列四种说法:
①半径确定了,圆就确定了;②直径是弦;
③弦是直径;④半圆是弧,但弧不一定是半圆.
其中,错误的说法有( )
A.1种 B.2种 C.3种 D.4种
3.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )
班级
平均数
中位数
众数
方差
八(1)班
94
93
94
12
八(2)班
95
95.5
93
8.4
A.八(2)班的总分高于八(1)班
B.八(2)班的成绩比八(1)班稳定
C.两个班的最高分在八(2)班
D.八(2)班的成绩集中在中上游
4.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为( )
A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定
5.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )
A. B. C. D.
6.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )
A.200米 B.200米 C.220米 D.100米
7.下列各数中,比﹣1大1的是( )
A.0 B.1 C.2 D.﹣3
8.计算-3-1的结果是( )
A.2 B.-2 C.4 D.-4
9.下列图形中,是中心对称但不是轴对称图形的为( )
A. B.
C. D.
10.实数的倒数是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.
12.二次根式中字母x的取值范围是_____.
13.如图,正△ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正△ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留π);若 A 点落在圆上记做第 1 次旋转,将△ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将△ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转……,若此旋转下去,当△ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次.
14.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
15.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.
16.关于x的不等式组的整数解有4个,那么a的取值范围( )
A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤4
三、解答题(共8题,共72分)
17.(8分)计算:
18.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下
如图(1)∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
S四边形ADCB=
S四边形ADCB=
∴化简得:a2+b2=c2
请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
19.(8分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.
20.(8分)已如:⊙O与⊙O上的一点A
(1)求作:⊙O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)
(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由.
21.(8分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.
求反比例函数和一次函数的表达式;求当时自变量的取值范围.
22.(10分)解不等式组:,并把解集在数轴上表示出来.
23.(12分)下表给出A、B、C三种上宽带网的收费方式:
收费方式
月使用费/元
包时上网时间/h
超时费/(元/min)
A
30
25
0.05
B
50
50
0.05
C
120
不限时
设上网时间为t小时.
(I)根据题意,填写下表:
月费/元
上网时间/h
超时费/(元)
总费用/(元)
方式A
30
40
方式B
50
100
(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;
(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?
24.如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2,
故根据数轴可知,
故选C
2、B
【解析】
根据弦的定义、弧的定义、以及确定圆的条件即可解决.
【详解】
解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.
故选B.
【点睛】
本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
3、C
【解析】
直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.
【详解】
A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;
B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;
C选项:两个班的最高分无法判断出现在哪个班,错误;
D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;
故选C.
【点睛】
考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.
4、A
【解析】
直接利用圆周角定理结合三角形的外角的性质即可得.
【详解】
连接BE,如图所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故选:A.
【点睛】
考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.
5、C
【解析】
试题解析:观察二次函数图象可知:
∴一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.
故选D.
6、D
【解析】
在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
【详解】
∵在热气球C处测得地面B点的俯角分别为45°,
∴BD=CD=100米,
∵在热气球C处测得地面A点的俯角分别为30°,
∴AC=2×100=200米,
∴AD==100米,
∴AB=AD+BD=100+100=100(1+)米,
故选D.
【点睛】
本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
7、A
【解析】
用-1加上1,求出比-1大1的是多少即可.
【详解】
∵-1+1=1,
∴比-1大1的是1.
故选:A.
【点睛】
本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”.
8、D
【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.
故选D.
9、C
【解析】
试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
考点:中心对称图形;轴对称图形.
10、D
【解析】
因为=,
所以的倒数是.
故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
【详解】
连接BD,如图,
∵AD为△ABC的外接圆⊙O的直径,
∴∠ABD=90°,
∴∠D=90°﹣∠BAD=90°﹣50°=1°,
∴∠ACB=∠D=1°.
故答案为1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.
12、x≤1
【解析】
二次根式有意义的条件就是被开方数是非负数,即可求解.
【详解】
根据题意得:1﹣x≥0,
解得x≤1.
故答案为:x≤1
【点睛】
主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
13、,1.
【解析】
首先连接OA′、OB、OC,再求出∠C′BC的大小,进而利用弧长公式问题即可解决.因为△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,推出当△ABC完成第2017次旋转时,BC边共回到原来位置1次.
【详解】
如图,连接OA′、OB、OC.
∵OB=OC=,BC=2,
∴△OBC是等腰直角三角形,
∴∠OBC=45°;
同理可证:∠OBA′=45°,
∴∠A′BC=90°;
∵∠ABC=60°,
∴∠A′BA=90°-60°=30°,
∴∠C′BC=∠A′BA=30°,
∴当点A第一次落在圆上时,则点C运动的路线长为:.
∵△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,
2017÷12=1.08,
∴当△ABC完成第2017次旋转时,BC边共回到原来位置1次,
故答案为:,1.
【点睛】
本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.
14、
【解析】
根据随机事件概率大小的求法,找准两点:
①符合条件的情况数目;
②全部情况的总数.
二者的比值就是其发生的概率的大小.
【详解】
解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
∴从中任意摸出一个球,则摸出白球的概率是.
故答案为:.
【点睛】
本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
15、.
【解析】
作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
【详解】
解:过M作MN⊥AD于N,
∵四边形ABCD是菱形,
∴
∵EF⊥AC,
∴AE=AF=2,∠AFM=30°,
∴AM=1,
Rt△AMN中,∠AMN=30°,
∴
∵AD=AB=2AE=4,
∴
由勾股定理得:
故答案为
【点睛】
本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
16、C
【解析】
分析:先根据一元一次不等式组解出x的取值,再根据不等式组
的整数解有4个,求出实数a的取值范围.
详解:
解不等式①,得
解不等式②,得
原不等式组的解集为
∵只有4个整数解,
∴整数解为:
故选C.
点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.
三、解答题(共8题,共72分)
17、5
【解析】
本题涉及零指数幂、负整数指数幂、绝对值、乘方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式=4-8×0.125+1+1=4-1+2=5
【点睛】
本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方、绝对值等考点的运算.
18、见解析.
【解析】
首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
【详解】
证明:连结BD,过点B作DE边上的高BF,则BF=b-a,
∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
∴ab+b1+ab=ab+c1+a(b-a),
∴a1+b1=c1.
【点睛】
此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
19、(1)证明见解析;(2)BC=,AD=.
【解析】
分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
(2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
详解:(1)如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠CBE,
∴∠OEB=∠CBE,
∴OE∥BC,
又∵∠C=90°,
∴∠AEO=90°,即OE⊥AC,
∴AC为⊙O的切线;
(2)∵ED⊥BE,
∴∠BED=∠C=90°,
又∵∠DBE=∠EBC,
∴△BDE∽△BEC,
∴,即,
∴BC=;
∵∠AEO=∠C=90°,∠A=∠A,
∴△AOE∽△ABC,
∴,即,
解得:AD=.
点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.
20、(1)答案见解析;(2)证明见解析.
【解析】
(1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;
(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,,则判断BE为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF为矩形.
【详解】
解:(1)如图,正六边形ABCDEF为所作;
(2)四边形BCEF为矩形.理由如下:
连接BE,如图,
∵六边形ABCDEF为正六边形,
∴AB=BC=CD=DE=EF=FA,
∴,
∴,
∴,
∴BE为直径,
∴∠BFE=∠BCE=90°,
同理可得∠FBC=∠CEF=90°,
∴四边形BCEF为矩形.
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.
21、 (1) ,;(2)或.
【解析】
(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.
【详解】
(1)把代入得.
∴反比例函数的表达式为
把和代入得,
解得
∴一次函数的表达式为.
(2)由得
∴当或时,.
【点睛】
本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.
22、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.
【详解】
解不等式①得:x>﹣1,
解不等式②得:x≤3,
则不等式组的解集是:﹣1<x≤3,
不等式组的解集在数轴上表示为:
.
【点睛】
本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.
23、(I)见解析;(II)见解析;(III)见解析.
【解析】
(I)根据两种方式的收费标准分别计算,填表即可;
(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;
(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.
【详解】
(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,
当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,
填表如下:
月费/元
上网时间/h
超时费/(元)
总费用/(元)
方式A
30
40
45
75
方式B
50
100
150
200
(II)当0≤t≤25时,y1=30,
当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,
所以y1=;
当0≤t≤50时,y2=50,
当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,
所以y2=;
(III)当75<t<100时,选用C种计费方式省钱.理由如下:
当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,
当t=75时,y1=180,y2=125,y3=120,
所以当75<t<100时,选用C种计费方式省钱.
【点睛】
本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.
24、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
【解析】
(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
(2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
②直接写出满足条件的F点的坐标即可,注意不要漏写.
【详解】
解:(1)将A、C两点坐标代入抛物线,得 ,
解得: ,
∴抛物线的解析式为y=﹣x2+x+8;
(2)①∵OA=8,OC=6,
∴AC= =10,
过点Q作QE⊥BC与E点,则sin∠ACB = = =,
∴ =,
∴QE=(10﹣m),
∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
∴当m=5时,S取最大值;
在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
D的坐标为(3,8),Q(3,4),
当∠FDQ=90°时,F1(,8),
当∠FQD=90°时,则F2(,4),
当∠DFQ=90°时,设F(,n),
则FD2+FQ2=DQ2,
即+(8﹣n)2++(n﹣4)2=16,
解得:n=6± ,
∴F3(,6+),F4(,6﹣),
满足条件的点F共有四个,坐标分别为
F1(,8),F2(,4),F3(,6+),F4(,6﹣).
【点睛】
本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
2021-2022学年重庆市育才中学毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年重庆市育才中学毕业升学考试模拟卷数学卷含解析,共15页。试卷主要包含了下列交通标志是中心对称图形的为,下列各组数中,互为相反数的是,计算的结果为,某一公司共有51名员工等内容,欢迎下载使用。
2021-2022学年天津二十五中学毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年天津二十五中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一、单选题等内容,欢迎下载使用。
2021-2022学年陕西省博爱中学毕业升学考试模拟卷数学卷含解析: 这是一份2021-2022学年陕西省博爱中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。