2021-2022学年江苏省扬州大附属中学中考数学仿真试卷含解析
展开
这是一份2021-2022学年江苏省扬州大附属中学中考数学仿真试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,若点A等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列图形中,哪一个是圆锥的侧面展开图?
A. B. C. D.
2.分式方程=1的解为( )
A.x=1 B.x=0 C.x=﹣ D.x=﹣1
3.一个正多边形的内角和为900°,那么从一点引对角线的条数是( )
A.3 B.4 C.5 D.6
4.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )
A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
5.学完分式运算后,老师出了一道题“计算:”.
小明的做法:原式;
小亮的做法:原式;
小芳的做法:原式.
其中正确的是( )
A.小明 B.小亮 C.小芳 D.没有正确的
6.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是( )
A. B.
C. D.
7.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )
A.200米 B.200米 C.220米 D.100米
8.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是
A.科比罚球投篮2次,一定全部命中
B.科比罚球投篮2次,不一定全部命中
C.科比罚球投篮1次,命中的可能性较大
D.科比罚球投篮1次,不命中的可能性较小
9.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.直角梯形 B.平行四边形 C.矩形 D.正五边形
10.在实数﹣3.5、、0、﹣4中,最小的数是( )
A.﹣3.5 B. C.0 D.﹣4
11.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
A.12米 B.4米 C.5米 D.6米
12.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分
那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%
14.因式分解:a2b-4ab+4b=______.
15. 如图,已知,要使,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)
16.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.
17.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.
18.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)
20.(6分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.
(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?
(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?
21.(6分) (y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
求的值.
22.(8分)如图,在中,是的中点,过点的直线交于点,交 的平行线于点,交于点,连接、.
求证:;请你判断与的大小关系,并说明理由.
23.(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
每人销售件数
1800
510
250
210
150
120
人数
1
1
3
5
3
2
(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.
24.(10分)解方程:-=1
25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
26.(12分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.
(1)当m为何值时,方程有两个不相等的实数根;
(2)当m为何整数时,此方程的两个根都为负整数.
27.(12分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据圆锥的侧面展开图的特点作答.
【详解】
A选项:是长方体展开图.
B选项:是圆锥展开图.
C选项:是棱锥展开图.
D选项:是正方体展开图.
故选B.
【点睛】
考查了几何体的展开图,注意圆锥的侧面展开图是扇形.
2、C
【解析】
首先找出分式的最简公分母,进而去分母,再解分式方程即可.
【详解】
解:去分母得:
x2-x-1=(x+1)2,
整理得:-3x-2=0,
解得:x=-,
检验:当x=-时,(x+1)2≠0,
故x=-是原方程的根.
故选C.
【点睛】
此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.
3、B
【解析】
n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.
【详解】
设这个正多边形的边数是n,则
(n-2)•180°=900°,
解得:n=1.
则这个正多边形是正七边形.
所以,从一点引对角线的条数是:1-3=4.
故选B
【点睛】
本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.
4、D
【解析】
解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.
点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
5、C
【解析】
试题解析:
=
=
=
=
=1.
所以正确的应是小芳.
故选C.
6、D
【解析】
将,代入,得,,然后分析与的正负,即可得到的大致图象.
【详解】
将,代入,得,,
即,.
∴.
∵,∴,∴.
即与异号.
∴.
又∵,
故选D.
【点睛】
本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
7、D
【解析】
在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
【详解】
∵在热气球C处测得地面B点的俯角分别为45°,
∴BD=CD=100米,
∵在热气球C处测得地面A点的俯角分别为30°,
∴AC=2×100=200米,
∴AD==100米,
∴AB=AD+BD=100+100=100(1+)米,
故选D.
【点睛】
本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
8、A
【解析】
试题分析:根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。因此。
A、科比罚球投篮2次,不一定全部命中,故本选项正确;
B、科比罚球投篮2次,不一定全部命中,正确,故本选项错误;
C、∵科比罚球投篮的命中率大约是83.3%,
∴科比罚球投篮1次,命中的可能性较大,正确,故本选项错误;
D、科比罚球投篮1次,不命中的可能性较小,正确,故本选项错误。
故选A。
9、D
【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.
详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;
B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
C.矩形是轴对称图形,也是中心对称图形,故此选项错误;
D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.
故选D.
点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
10、D
【解析】
根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可
【详解】
在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.
【点睛】
掌握实数比较大小的法则
11、A
【解析】
试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).
∴(米).故选A.
【详解】
请在此输入详解!
12、D
【解析】
A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1%
【解析】
依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.
【详解】
∵被调查学生的总数为10÷20%=50人,
∴最喜欢篮球的有50×32%=16人,
则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%,
故答案为:1.
【点睛】
本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
14、
【解析】
先提公因式b,然后再运用完全平方公式进行分解即可.
【详解】
a2b﹣4ab+4b
=b(a2﹣4a+4)
=b(a﹣2)2,
故答案为b(a﹣2)2.
【点睛】
本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.
15、可添∠ABD=∠CBD或AD=CD.
【解析】
由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.
【详解】
.可添∠ABD=∠CBD或AD=CD,
①∠ABD=∠CBD,
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SAS);
②AD=CD,
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SSS),
故答案为∠ABD=∠CBD或AD=CD.
【点睛】
本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.
16、k≥﹣1
【解析】
分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.
详解:∵关于x的一元二次方程x2+1x-k=0有实数根,
∴△=12-1×1×(-k)=16+1k≥0,
解得:k≥-1.
故答案为k≥-1.
点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
17、m≤1
【解析】
根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.
【详解】
解:由题意知,△=4﹣4(m﹣1)≥0,
∴m≤1,
故答案为:m≤1.
【点睛】
此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.
18、.
【解析】
由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.
【详解】
∵点B的坐标为(2,3),点C为OB的中点,
∴C点坐标为(1,1.5),
∴k=1×1.5=1.5,即反比例函数解析式为y=,
∴S△OAD=×1.5=.
故答案为:.
【点睛】
本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、塔CD的高度为37.9米
【解析】
试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.
试题解析:作BE⊥CD于E.
可得Rt△BED和矩形ACEB.
则有CE=AB=16,AC=BE.
在Rt△BED中,∠DBE=45°,DE=BE=AC.
在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.
∵16+DE=DC,
∴16+AC=AC,
解得:AC=8+8=DE.
所以塔CD的高度为(8+24)米≈37.9米,
答:塔CD的高度为37.9米.
20、(1)10,1;(2).
【解析】
(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;
(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.
【详解】
解:(1)图象过点,
,
解得
.
.
的顶点坐标为.
,
∴当时,最大=1.
答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.
(2)∵函数图象的对称轴为直线,
可知点关于对称轴的对称点是,
又∵函数图象开口向下,
∴当时,.
答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.
【点睛】
本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.
21、1
【解析】
通过已知等式化简得到未知量的关系,代入目标式子求值.
【详解】
∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,
∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,
∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,
∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.
∵x,y,z均为实数,
∴x=y=z.
∴
22、(1)证明见解析;(2)证明见解析.
【解析】
(1)利用平行线的性质和中点的定义得到 ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.
【详解】
证明:(1)∵BG∥AC
∴
∵是的中点
∴
又∵
∴△BDG≌△CDF
∴
(2)由(1)中△BDG≌△CDF
∴GD=FD,BG=CF
又∵
∴ED垂直平分DF
∴EG=EF
∵在△BEG中,BE+BG>GE,
∴>
【点睛】
本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.
23、(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件
【解析】
试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;
(2)把月销售额320件与大部分员工的工资比较即可判断.
(1)平均数件,
∵最中间的数据为210,
∴这组数据的中位数为210件,
∵210是这组数据中出现次数最多的数据,
∴众数为210件;
(2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.
考点:本题考查的是平均数、众数和中位数
点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
24、
【解析】
【分析】先去分母,把分式方程化为一元一次方程,解一元一次方程,再验根.
【详解】解:去分母得:
解得:
检验:把代入
所以:方程的解为
【点睛】本题考核知识点:解方式方程. 解题关键点:去分母,得到一元一次方程,.验根是要点.
25、(1)若某天该商品每件降价3元,当天可获利1692元;
(2)2x;50﹣x.
(3)每件商品降价1元时,商场日盈利可达到2000元.
【解析】
(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
【详解】
(1)当天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
故答案为2x;50-x.
(3)根据题意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+10=0,
解得:x1=10,x2=1,
∵商城要尽快减少库存,
∴x=1.
答:每件商品降价1元时,商场日盈利可达到2000元.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
26、 (1) m≠1且m≠;(2) m=-1或m=-2.
【解析】
(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;
(2) 解方程,得:,,由m为整数,且方程的两个根均为负整数可得m的值.
【详解】
解:(1) △=-4ac=(3m-2)+24m=(3m+2)≥1
当m≠1且m≠时,方程有两个不相等实数根.
(2)解方程,得:,,
m为整数,且方程的两个根均为负整数,
m=-1或m=-2.
m=-1或m=-2时,此方程的两个根都为负整数
【点睛】
本题主要考查利用一元二次方程根的情况求参数.
27、(1)甲80件,乙20件;(2)x≤90
【解析】
(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
【详解】
解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得30x+20(100﹣x)=2800,
解得x=80,
则100﹣x=20,
答:甲种奖品购买了80件,乙种奖品购买了20件;
(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得:30x+20(100﹣x)≤2900,
解得:x≤90,
【点睛】
本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
相关试卷
这是一份2022届北京大附属中学中考数学仿真试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,计算4×的结果等于,下列分式中,最简分式是等内容,欢迎下载使用。
这是一份2021-2022学年陕西省西安市交通大附属中学中考数学仿真试卷含解析,共19页。试卷主要包含了﹣2018的相反数是等内容,欢迎下载使用。
这是一份2021-2022学年南昌市南大附中中考数学仿真试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

