|试卷下载
搜索
    上传资料 赚现金
    2021福建省漳州市高三毕业班数学适应性测试题答案
    立即下载
    加入资料篮
    2021福建省漳州市高三毕业班数学适应性测试题答案01
    2021福建省漳州市高三毕业班数学适应性测试题答案02
    2021福建省漳州市高三毕业班数学适应性测试题答案03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021福建省漳州市高三毕业班数学适应性测试题答案

    展开
    这是一份2021福建省漳州市高三毕业班数学适应性测试题答案,共12页。试卷主要包含了C 2,A 8,因为,,所以,等内容,欢迎下载使用。

    2021届福建省漳州市高三毕业班数学适应性测试题答案

    (考试时间:120分钟;满分:150分)

    本试卷分第Ⅰ卷和第Ⅱ卷两部分。第Ⅰ卷为选择题,第Ⅱ卷为非选择题。

    第Ⅰ卷(选择题60分)

    .单项选择题题共8小题,每小题5分,40.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1C        2D        3D         4A        5 B       6C

    7A        8C

    【解析】

    1集合,不满足,则A错;,则B错;,则C正确;,则D.故选C.

    2

    ,复数在复平面上对应的点为,故复数在复平面上对应的点位于第四象限,故

    D.

    3依题意可知在角的终边上,所以,故选D

    4是抛物线内的一点,设点在抛物线准线上的射影为,根据抛物线的定义可知

      ,要求的最小值,即求的最小值. 三点共线时,

      取到最小值. 故选A.

    5由题意得,恰好有6段圆弧或有段圆弧与直线相交时,才恰有个交点,每段圆弧的圆心角都为,且从第1圆弧到第圆弧的半径长构成等差数列:,,

    当得到的“螺旋蚊香”与直线恰有个交点时,“螺旋蚊香”的总长度

    的最大值为故选B.

     

     

     

    6 由题意,以所在直线为x轴,的垂直平分线为y轴建立坐标系,

    由于,故

    又点的重心,则

    ,故选C

    7

    为函数的图象交点的横坐标

    为函数的图象交点的横坐标

    为函数的图象交点的横坐标

    在同一坐标系中画出图象,可得.故选A.

    8如图,点分别是边

    的中点,这两个正四面体公共部分为多面体

    三棱锥是正四面体,其棱长为正四面体棱长的一半,

    这两个正四面体公共部分的体积为.  

    故选C.

    二、多项选择题题共4小题,每小题5,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。)

    9ACD              10BCD           11ABD          12BD

       【解析】

    9 由于小王选择的是每月还款数额相同的还贷方式,故可知2020年用于房贷方面的支出费用跟2017

    相同,D错;设一年房贷支出费用为,则可知2017年小王的家庭收入为2020年小王的家庭收入为,小王一家2020年的家庭收入比2017年增加了50% C错;20172020年用于饮食的支出费用分别为A错;20172020年用于其他方面的支出费用分别是B对.故选ACD

    10由已知,得. ,则,不满足,故A错;

        ,故B正确;当时,且,则

        所以,故C正确;当时,且,则,所以

        ,所以,则,故D正确. 故选BCD.

    11A正确;

    已知

    所以

    D正确;

    为锐角三角形,

    所以 ,若为直角三角

    形或钝角三角形时可类似证明,B正确;

    ,所以C故选ABD.

    12因为的定义域为所以是奇函数,

    但是所以不是周期为的函数,故A错误;

    时,单调递增,

    时,单调递增,

    连续,故单调递增,故B正确;

    时,

    得,

    时,

    得,,

    因此,内有20个极值点,故C错误;

    时,

    所以

    单调递增,

    所以单调递增.

    趋近于时,趋近于, 所以,故D正确. 故选BD.

    填空题(本大题共4小题,每小题5分,共20.

    13 14          15  16

    【解析】

    13展开式的通项为

    ,则 所以的展开式中,的系数为

    故答案为.

    14由已知,当时,,不等式等价于

    定义在R上的偶函数

    所以,所以,解得

    则不等式的解集为

    故答案为.

    15因为,所以

    又因为是等腰直角三角形,,所以

    因为,又

    所以所以,所以

    根据题意可知异面直线所成角为

    根据余弦定理得,

    故答案为.

     

     

     

     

     

    16如图所示建立平面直角坐标系,设的中点为,则由双曲线的对称性知,

    所以

    所以,可得

       的焦距为,所以. ,则

    又由,得

    所以,在中,由余弦定理得,

    ,解得,即

    故答案为.

    解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤.

    17.解:(1因为,所以

    因为所以······················································2

    因为所以·····················································3

    所以的面积······················································5

    2由(1)可得

    所以

                     ·························································8

    因为所以······················································9

    所以时,有最大值1··············································10

    18.解:(1设等比数列的公比为,根据已知条件, 依次构成等差数列,

    所以,则························································2

    因为,所以,解得···················································4

    ,即,所以,解得·················································5

    所以····························································6

    2·························································7

    ································································9

    ·······························································12

    ·····························································7

    *

    ································································9

    可得

    ·······························································11

    所以···························································12

    ····························································9

    ·······························································12

    19.解:1)取的中点为,连接

    ////,且·························································2

    所以四边形为平行四边形, 所以//,又

    所以//.··························································4

    2,则

    是圆柱底面的直径,是弧的中点,所以中点,则

    为原点,分别为轴,轴,轴的正方向建立空间直角坐标系

    如图···························································5

    ,则·····················································6

    设平面的一个法向量为,则

    ,取,则

    ······························································8

    设平面的一个法向量为,则

    ,解得,取,则

    ·····························································10

    所以.···························································11

    所以锐二面角的余弦值为.···········································12

     

     

     

     

     

     

     

     

     

     

    20.解:(1

    ································································2

    ································································3

    2)由题意样本方差,故所以·····································4

    由题意,该厂生产的产品为正品的概率

    .所以//.·························································6

    3所有可能取值.··········································7

               

                ···························································9

    随机变量的分布列为

    0

    1

    2

    3

    ·······························································11

    ·······························································12

    21.解:1,令,得

    单调递减

    单调递增

    所以的极小值点同时也是最小值点,即································2

    ,即时,上没有零点;

    ,即时,上只有1个零点;········································3

    因为,所以只有一个零点,

    又因为,取

    ,得

    单调递增

    单调递减

    ,所以对,所以,即

    所以,所以内只有一个零点,

    所以上有两个零点.···············································5

    综上所述,当时,上有两个零点;

    时,函数上没有零点;

    时,函数上有一个零点.··········································6

    2方法一:

    恒成立,

    ································································7

    所以

    构造,所以上单调递增

    只需,即恒成立····················································8

    ····························································9

    时,,所以单调递减;

    时,,所以单调递增,

    所以,即·························································11

    ,所以. ·······················································12

    方法二:

    ,有,则当时,····················································7

    ,所以单调递减,··············································8

    注意到,所以.(必要性) ··············································9

    下面证明

    ,所以上单调递增

    ,所以上单调递减

    所以

        即对,即)得证.

    因为,所以,即,即.

    时,··························································11

    .(充分性)························································12

    方法三:

    ,即恒成立

    ································································7

    恒成立,·····················································8

    注意到单调递增, ················································9

    时,

    所以···························································10

    时,

    注意到,存在,使得,矛盾··········································11

    综上,.·························································12

    22.解:1)由题意可得:解得 ·································2

    则椭圆方程为·····················································3

    2)设直线的方程为,设

    ,整理得

      ·······························································4

    椭圆的左、右顶点分别为

    直线方程为:

    直线与直线交于点,则 ···········································5

    因为,都存在,所以要证三点共线,只需证·····························6

    只需证

    只需证

    只需证

    只需证

    三点共线.···················································8

    3由(2)可得

    ·······························································10

    ),

    函数在区间单调递增,

    即当时,取到最大值.···········································12

     

     

    欢迎访问中试卷网”——http://sj.fjjy.org

    相关试卷

    福建省漳州市2024届高三毕业班第二次质量检测数学试卷(附答案): 这是一份福建省漳州市2024届高三毕业班第二次质量检测数学试卷(附答案),文件包含福建省漳州市2024届高三毕业班第二次质量检测数学试卷pdf、福建省漳州市2024届高三毕业班第二次质量检测数学答案pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    2023届福建省漳州市高三毕业班第三次质量检测数学试题(附答案): 这是一份2023届福建省漳州市高三毕业班第三次质量检测数学试题(附答案),文件包含2023届福建省漳州市高三毕业班下学期第三次质量检测丨数学答案pdf、2023届福建省漳州市高三毕业班下学期第三次质量检测丨数学pdf等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。

    福建省漳州市2023届高三毕业班第三次质量检测数学试卷及答案: 这是一份福建省漳州市2023届高三毕业班第三次质量检测数学试卷及答案,共13页。试卷主要包含了已知sin=,已知双曲线C等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map