|试卷下载
搜索
    上传资料 赚现金
    陕西省三原县市级名校2021-2022学年中考猜题数学试卷含解析
    立即下载
    加入资料篮
    陕西省三原县市级名校2021-2022学年中考猜题数学试卷含解析01
    陕西省三原县市级名校2021-2022学年中考猜题数学试卷含解析02
    陕西省三原县市级名校2021-2022学年中考猜题数学试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省三原县市级名校2021-2022学年中考猜题数学试卷含解析

    展开
    这是一份陕西省三原县市级名校2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,已知,则的值为,下列命题正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( )

    A. B. C. D.
    2.下列图形中,可以看作中心对称图形的是( )
    A. B. C. D.
    3.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为(  )
    A.1 B.4 C.8 D.12
    4.已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )

    A.4b+2c B.0 C.2c D.2a+2c
    5.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为(  )
    A.5 B.﹣1 C.2 D.﹣5
    6.已知,则的值为
    A. B. C. D.
    7.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为(  )

    A.30° B.60° C.50° D.40°
    8.已知二次函数(为常数),当时,函数的最小值为5,则的值为(  )
    A.-1或5 B.-1或3 C.1或5 D.1或3
    9.下列命题正确的是( )
    A.内错角相等 B.-1是无理数
    C.1的立方根是±1 D.两角及一边对应相等的两个三角形全等
    10.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是(  )
    A.25和30 B.25和29 C.28和30 D.28和29
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若,,则的值为 ________ .
    12.在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN是等腰三角形,则∠B的度数为___________.
    13.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.

    14.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.
    15.如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为,则BC的长是_____.

    16.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)

    三、解答题(共8题,共72分)
    17.(8分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)

    18.(8分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    19.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。

    20.(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;
    (1)搅匀后,从中任意取一个球,标号为正数的概率是 ;
    (2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
    21.(8分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;
    (3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1. 求的值.

    22.(10分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.
    求证:BG=FG;若AD=DC=2,求AB的长.
    23.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积.

    24.如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得△ABC∽△CDE.(保留作图痕迹不写作法)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.
    【详解】
    解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),
    ∴二元一次方程组的解为
    故选A.
    【点睛】
    本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
    2、B
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、是中心对称图形,故此选项正确;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误.
    故选:B.
    【点睛】
    此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    3、B
    【解析】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
    【详解】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
    则x1、x2为方程ax2+bx+c=0的两根,
    ∴x1+x2=-,x1•x2=,
    ∴AB=|x1-x2|====,
    ∵△ABP组成的三角形恰为等腰直角三角形,
    ∴||=•,
    =,
    ∴b2-1ac=1.
    故选B.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
    4、A
    【解析】
    由数轴上点的位置得:b|c|>|a|,
    ∴a+c>0,a−2b>0,c+2b<0,
    则原式=a+c−a+2b+c+2b=4b +2c.
    故选:B.
    点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.
    5、B
    【解析】
    根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.
    【详解】
    ∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,
    ∴-2+m=−,
    解得,m=-1,
    故选B.
    6、C
    【解析】
    由题意得,4−x⩾0,x−4⩾0,
    解得x=4,则y=3,则=,
    故选:C.
    7、A
    【解析】
    分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.
    详解:∵AB∥CD,∴∠A+∠C=180°.
    ∵∠A=120°,∴∠C=60°.
    ∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.
    故选A.
    点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.
    8、A
    【解析】
    由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可.
    【详解】
    解:∵x>h时,y随x的增大而增大,当x ∴①若h<1,当时,y随x的增大而增大,
    ∴当x=1时,y取得最小值5,
    可得:,
    解得:h=−1或h=3(舍),
    ∴h=−1;
    ②若h>3,当时,y随x的增大而减小,
    当x=3时,y取得最小值5,
    可得:,
    解得:h=5或h=1(舍),
    ∴h=5,
    ③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,
    ∴此种情况不符合题意,舍去.
    综上所述,h的值为−1或5,
    故选:A.
    【点睛】
    本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.
    9、D
    【解析】解:A.两直线平行,内错角相等,故A错误;
    B.-1是有理数,故B错误;
    C.1的立方根是1,故C错误;
    D.两角及一边对应相等的两个三角形全等,正确.
    故选D.
    10、D
    【解析】
    【分析】根据中位数和众数的定义进行求解即可得答案.
    【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,
    处于最中间是数是28,
    ∴这组数据的中位数是28,
    在这组数据中,29出现的次数最多,
    ∴这组数据的众数是29,
    故选D.
    【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-.
    【解析】
    分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.
    详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.
    故答案为.
    点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.
    12、或.
    【解析】
    MN是AB的中垂线,则△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.
    解:∵把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,

    ∴MN是AB的中垂线.
    ∴NB=NA.
    ∴∠B=∠BAN,
    ∵AB=AC
    ∴∠B=∠C.
    设∠B=x°,则∠C=∠BAN=x°.
    1)当AN=NC时,∠CAN=∠C=x°.
    则在△ABC中,根据三角形内角和定理可得:4x=180,
    解得:x=45°则∠B=45°;
    2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;
    3)当CA=CN时,∠NAC=∠ANC=.
    在△ABC中,根据三角形内角和定理得到:x+x+x+=180,
    解得:x=36°.
    故∠B的度数为 45°或36°.
    13、15
    【解析】
    分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
    详解:∵
    当y=127时, 解得:x=43;
    当y=43时,解得:x=15;
    当y=15时, 解得 不符合条件.
    则输入的最小正整数是15.
    故答案为15.
    点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
    14、≤M≤6
    【解析】
    把原式的xy变为2xy-xy,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy的范围;再把原式中的xy变为-2xy+3xy,同理得到xy的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy的范围,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范围即为M的范围.
    【详解】
    由得:
    即 所以
    由得:
    即 所以

    ∴不等式两边同时乘以−2得:
    ,即
    两边同时加上2得:即



    则M的取值范围是≤M≤6.
    故答案为:≤M≤6.
    【点睛】
    此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M关于xy的式子,从而求出M的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.
    15、1
    【解析】
    分析:设∠AEF=n°,由题意,解得n=120,推出∠AEF=120°,在Rt△EFD中,求出DE即可解决问题.
    详解:设∠AEF=n°,
    由题意,解得n=120,
    ∴∠AEF=120°,
    ∴∠FED=60°,
    ∵四边形ABCD是矩形,
    ∴BC=AD,∠D=90°,
    ∴∠EFD=10°,
    ∴DE=EF=1,
    ∴BC=AD=2+1=1,
    故答案为1.

    点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    16、>
    【解析】
    观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
    【详解】
    解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
    则乙地的日平均气温的方差小,
    故S2甲>S2乙.
    故答案为:>.
    【点睛】
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.

    三、解答题(共8题,共72分)
    17、(1)证明见解析 (2)﹣6π
    【解析】
    (1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;
    (2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.
    【详解】
    (1)证明:连接OD,
    ∵D为弧BC的中点,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠BAD=∠ADO,
    ∴∠CAD=∠ADO,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,
    ∴OD⊥EF,
    ∴EF为半圆O的切线;
    (2)解:连接OC与CD,
    ∵DA=DF,
    ∴∠BAD=∠F,
    ∴∠BAD=∠F=∠CAD,
    又∵∠BAD+∠CAD+∠F=90°,
    ∴∠F=30°,∠BAC=60°,
    ∵OC=OA,
    ∴△AOC为等边三角形,
    ∴∠AOC=60°,∠COB=120°,
    ∵OD⊥EF,∠F=30°,
    ∴∠DOF=60°,
    在Rt△ODF中,DF=6,
    ∴OD=DF•tan30°=6,
    在Rt△AED中,DA=6,∠CAD=30°,
    ∴DE=DA•sin30°=3,EA=DA•cos30°=9,
    ∵∠COD=180°﹣∠AOC﹣∠DOF=60°,
    由CO=DO,
    ∴△COD是等边三角形,
    ∴∠OCD=60°,
    ∴∠DCO=∠AOC=60°,
    ∴CD∥AB,
    故S△ACD=S△COD,
    ∴S阴影=S△AED﹣S扇形COD==.

    【点睛】
    此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S△ACD=S△COD是解题关键.
    18、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    19、(1)详见解析;(2)详见解析
    【解析】
    (1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,再根据全等三角形的性质和等量关系即可求解;
    (2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DCE,
    ∵点E为AD的中点,
    ∴AE=DE,
    在△AEF和△DEC中,

    ∴△AEF≌△DEC(AAS),
    ∴AF=CD,
    ∵AF=BD,
    ∴CD=BD,
    ∴D是BC的中点;
    (2)若AB=AC,则四边形AFBD是矩形.理由如下:
    ∵△AEF≌△DEC,
    ∴AF=CD,
    ∵AF=BD,
    ∴CD=BD;
    ∵AF∥BD,AF=BD,
    ∴四边形AFBD是平行四边形,
    ∵AB=AC,BD=CD,
    ∴∠ADB=90°,
    ∴平行四边形AFBD是矩形.
    【点睛】
    本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.
    20、(1);(2)
    【解析】
    【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
    【详解】解:(1)因为1、-1、2三个数中由两个正数,
    所以从中任意取一个球,标号为正数的概率是.
    (2)因为直线y=kx+b经过一、二、三象限,
    所以k>0,b>0,
    又因为取情况:
    k b
    1
    -1
    2
    1
    1,1
    1,-1
    1,2
    -1
    -1,1
    -1,-1
    -1.2
    2
    2,1
    2,-1
    2,2
    共9种情况,符合条件的有4种,
    所以直线y=kx+b经过一、二、三象限的概率是.
    【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
    21、 (1) ;(2) 和;(3)
    【解析】
    (1)设,,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;
    (3)过点作DH⊥轴于点,由::,可得::.设,可得 点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到 ①,将代入抛物线上,可得②,联立①②解方程组,即可解答.
    【详解】
    解:设,,则是方程的两根,
    ∴.
    ∵已知抛物线与轴交于点.

    在△中:,在△中:,
    ∵△为直角三角形,由题意可知∠°,
    ∴,
    即,
    ∴,
    ∴,
    解得:,
    又,
    ∴.
    由可知:,令则,
    ∴,
    ∴.
    ①以为边,以点、、、Q为顶点的四边形是四边形时,
    设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,

    即∠°∠.
    ∵四边形为平行四边形,
    ∴∥,又l∥轴,
    ∴∠∠=∠,
    ∴△≌△,
    ∴,
    ∴点的横坐标为,

    即点坐标为.
    ②当以为边,以点、、、Q为顶点的四边形是四边形时,

    设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
    即∠°∠.
    ∵四边形为平行四边形,
    ∴∥,又l∥轴,
    ∴∠∠=∠,
    ∴△≌△,
    ∴,
    ∴点的横坐标为,

    即点坐标为
    ∴符合条件的点坐标为和.
    过点作DH⊥轴于点,
    ∵::,
    ∴::.
    设,则点坐标为,
    ∴.
    ∵点在抛物线上,
    ∴点坐标为,
    由(1)知,
    ∴,
    ∵∥,
    ∴△∽△,

    ∴,
    ∴,
    即①,
    又在抛物线上,
    ∴②,
    将②代入①得:,
    解得(舍去),
    把代入②得:.
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
    22、(1)证明见解析;(2)AB=
    【解析】
    (1)证明:∵,DE⊥AC于点F,

    ∴∠ABC=∠AFE.
    ∵AC=AE,∠EAF=∠CAB,
    ∴△ABC≌△AFE
    ∴AB=AF.
    连接AG,
    ∵AG=AG,AB=AF
    ∴Rt△ABG≌Rt△AFG
    ∴BG=FG
    (2)解:∵AD=DC,DF⊥AC

    ∴∠E=30°
    ∴∠FAD=∠E=30°
    ∴AB=AF=
    23、(1)见详解;(2)x=18;(3) 416 m2.
    【解析】
    (1)根据“垂直于墙的长度=可得函数解析式;
    (2)根据矩形的面积公式列方程求解可得;
    (3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.
    【详解】
    (1)根据题意知,y==-x+;
    (2)根据题意,得(-x+)x=384,
    解得x=18或x=32.
    ∵墙的长度为24 m,∴x=18.
    (3)设菜园的面积是S,则S=(-x+)x=-x2+x=- (x-25)2+.
    ∵-<0,∴当x<25时,S随x的增大而增大.
    ∵x≤24,
    ∴当x=24时,S取得最大值,最大值为416.
    答:菜园的最大面积为416 m2.
    【点睛】
    本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.
    24、详见解析
    【解析】
    利用尺规过D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.
    【详解】
    解:过D作DE⊥AC,如图所示,△CDE即为所求:

    【点睛】
    本题主要考查了尺规作图,相似三角形的判定,解决问题的关键是掌握相似三角形的判定方法.

    相关试卷

    浙江省江北区市级名校2021-2022学年中考猜题数学试卷含解析: 这是一份浙江省江北区市级名校2021-2022学年中考猜题数学试卷含解析,共19页。

    辽宁省锦州市凌海市市级名校2021-2022学年中考猜题数学试卷含解析: 这是一份辽宁省锦州市凌海市市级名校2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了- 的绝对值是,下列计算正确的是等内容,欢迎下载使用。

    2022届陕西省三原县市级名校中考数学仿真试卷含解析: 这是一份2022届陕西省三原县市级名校中考数学仿真试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列图标中,是中心对称图形的是,下列各数中负数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map