|学案下载
终身会员
搜索
    上传资料 赚现金
    分式方程及应用(中下)学案(无答案)
    立即下载
    加入资料篮
    分式方程及应用(中下)学案(无答案)01
    分式方程及应用(中下)学案(无答案)02
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    分式方程及应用(中下)学案(无答案)

    展开
    这是一份分式方程及应用(中下)学案(无答案),共5页。学案主要包含了巩固训练等内容,欢迎下载使用。

    2.了解分式方程的基本思想和方法。
    3.理解分式方程可能无解的原因,并掌握检验的方法
    知识梳理
    分式方程
    知识点1 分式方程的定义
    分母里含有未知数的方程叫分式方程。
    分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。
    分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数)
    例1.下列方程中①=1,②=2,③=,④+=5中是分式方程的有( )
    A.①② B.②③ C.③④ D.②③④
    知识点2 解分式方程
    解分式方程的一般方法和步骤
    (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。
    解这个整式方程。
    验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
    注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。
    例2.在解方程+=1时,需要去分母时,可以把方程两边都乘以_______,根据是______.
    例3.把分式方程=化为整式方程,方程两边需同时乘以( )
    A.2x B.2x-4 C.2x(x-2) D.2x(2x-4)
    例4.若关于的方程的解为,则= .
    例5.解分式方程
    (1) (2)
    知识点3 增根
    增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
    例6.若分式方程有增根,则k为( )
    A. 2 B.1 C. 3 D.-2
    例7.若方程有增根,则的值为 .
    例8.当k的值等于 时,关于x的方程不会产生增根
    分式方程的应用
    分式方程的应用主要就是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系的代数式是分式而已。
    一般地,列分式方程(组)解应用题的一般步骤:
    1.审清题意;
    2.设未知数;
    3.根据题意找等量关系,列出分式方程;
    4.解分式方程,并验根;
    5.检验分式方程的根是否符合题意,并根据检验结果写出答案
    常见的实际问题中等量关系
    工程问题
    1.工作量=工作效率×工作时间
    2.完成某项任务的各工作量的和=总工作量=1.
    例1.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
    (1)求乙工程队单独完成这项工程所需的天数;
    (2)求两队合做完成这项工程所需的天数.
    营销问题
    1.商品利润=商品售价一商品成本价;

    3.商品销售额=商品销售价×商品销售量;
    4.商品的销售利润=(销售价一成本价)×销售量.
    例2.某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商场共盈利多少元?
    行程问题
    1.路程=速度×时间
    2.在航行问题中,其中数量关系是: 顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度; 3.航空问题类似于航行问题.
    例3.某校师生去离校15km的花果园参观,张老师带领服务组与师生队伍同时出发,服务组的行进速度是师生队伍的2倍,以便提前30分钟到达做好准备,求服务组与师生队伍的行进速度。
    例4.一艘轮船在静水中的最大航速为20千米/时,它沿江最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的水流速度为多少?
    规律方法指导
    一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.
    2.列方程(组)解应用题,在弄清题意后,接着就是设未知数,设未知数对后面列方程起着关键作用,对于一道应用题,首先考虑设直接未知数,如果设直接未知数不奏效,就应考虑设间接未知数,就是把一个不是题目中最后要求的未知量设为未知数,求出该数后,再求出要求的数.
    三、巩固训练
    (一)分式方程
    1、若分式方程的解为,则= .
    2、若关于x的方程-=有增根x=-1,那么k的值为( )
    A.1 B.3 C.6 D.9
    3、 若方程有增根,则增根为 .
    4、若关于x的分式方程无解,则m的值为__________
    5.若关于x的分式方程在实数范围内无解,则实数a=______.
    6、要使的值相等,则x=__________。
    7、若方程有增根,则增根为 .
    8、已知关于x的方程=-的解为x=-,则m=______
    9、解方程:
    ⑴ ⑵
    ⑶+=; ⑷-1=.
    10、若关于x的方程-=有增根,求增根和k的值.
    11、 若关于的分式方程的解为正数,求的取值范围
    12、关于的方程的解大于零, 求的取值范围
    (二)分式方程的应用
    1一个工人生产零件,计划30天完成,若每天多生产5个,则在26天里完成且多生产10个,若设原计划每天生产x个,则这个工人原计划每天生产多少个零件?根据题意可列方程( )
    A、 B、 C、 D、
    2几名同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设参加旅游的学生共有x人,则根据题意可列方程( )
    A、 B、 C、 D、
    3、某厂第一车间加工一批毛衣,4天完成了任务的一半,这时,第二车间加入,两车间共同工作两天后就完成了任务并超额完成任务的,求第二车间单独加工这批毛衣所用的天数.
    4、小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗?
    5、改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划多种1/3,结果提前4天完成任务,原计划每天种多少棵数?
    6、一条船往返于甲乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆流水行驶,已知船在静水中的速度为8km/h,平时逆水航行与顺水航行所用的时间比为2:1,某天恰逢暴雨,水流速度是原来的2倍,这条船往返共用了9h.问甲乙两港相距多远?
    7.为办好今年的“迎春花展”,深圳市政府计划投资720万元来布置展位.施工过程中,由于精打细算,结果每个展位的造价比原计划平均降低了1.5万元,因此实际支出600万元.问:每个展位原计划造价是多少万元?本届花展共布置了多少个展位?
    8、甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。问甲、乙两公司各有多少人?
    9.为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。这样,这两个小组的每个同学就要比原计划多做 4面。如果这3个小组的人数相等,那么每个小组有多少名学生?
    相关学案

    分式方程及应用学案-无答案: 这是一份分式方程及应用学案-无答案,共10页。学案主要包含了分式方程题型分析,行程问题,工程问题等内容,欢迎下载使用。

    二次函数的性质与应用(中下)-无答案学案: 这是一份二次函数的性质与应用(中下)-无答案学案,共10页。学案主要包含了拓展提升等内容,欢迎下载使用。

    分式与分式方程综合-中下学案(无答案): 这是一份分式与分式方程综合-中下学案(无答案),共6页。学案主要包含了典例精讲,课堂作业,课后作业,课后总结等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map