2021-2022学年广东省广州市白云区华师附中新世界校中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.对于非零的两个实数、,规定,若,则的值为( )
A. B. C. D.
2.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( )
A.13,5 B.6.5,3 C.5,2 D.6.5,2
3.下列关于x的方程一定有实数解的是( )
A. B.
C. D.
4.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)
5.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是 ( )
A.1 B.1.5 C.2 D.2.5
6.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是( )
A. B.
C. D.
7.下列各数中,最小的数是( )
A.﹣4 B.3 C.0 D.﹣2
8.下列多边形中,内角和是一个三角形内角和的4倍的是( )
A.四边形 B.五边形 C.六边形 D.八边形
9.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )
A. B. C. D.
10.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.用不等号“>”或“<”连接:sin50°_____cos50°.
12.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.
13.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.
14.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.
15.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.
16.关于 x 的方程 ax=x+2(a1) 的解是________.
17.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.
三、解答题(共7小题,满分69分)
18.(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).
(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;
(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.
19.(5分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)
(1)此时小强头部E点与地面DK相距多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
20.(8分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.
等级
得分x(分)
频数(人)
A
95<x≤100
4
B
90<x≤95
m
C
85<x≤90
n
D
80<x≤85
24
E
75<x≤80
8
F
70<x≤75
4
请你根据图表中的信息完成下列问题:
(1)本次抽样调查的样本容量是 .其中m= ,n= .
(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;
(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?
(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
21.(10分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.
(1)在图1中,过点O作AC的平行线;
(2)在图2中,过点E作AC的平行线.
22.(10分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,.
(1)求抛物线的解析式;
(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。
23.(12分)问题提出
(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为 ;
问题探究
(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;
问题解决
(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.
24.(14分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.
考点:1.新运算;2.分式方程.
2、D
【解析】
根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,
【详解】
解:如下图,
∵△ABC的三条边长分别是5,13,12,且52+122=132,
∴△ABC是直角三角形,
其斜边为外切圆直径,
∴外切圆半径==6.5,
内切圆半径==2,
故选D.
【点睛】
本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.
3、A
【解析】
根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.
【详解】
A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;
B.ax=3中当a=0时,方程无解,不符合题意;
C.由可解得不等式组无解,不符合题意;
D.有增根x=1,此方程无解,不符合题意;
故选A.
【点睛】
本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.
4、B
【解析】
作出图形,结合图形进行分析可得.
【详解】
如图所示:
①以AC为对角线,可以画出▱AFCB,F(-3,1);
②以AB为对角线,可以画出▱ACBE,E(1,-1);
③以BC为对角线,可以画出▱ACDB,D(3,1),
故选B.
5、C
【解析】
连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.
【详解】
连接AE,
∵AB=AD=AF,∠D=∠AFE=90°,
由折叠的性质得:Rt△ABG≌Rt△AFG,
在△AFE和△ADE中,
∵AE=AE,AD=AF,∠D=∠AFE,
∴Rt△AFE≌Rt△ADE,
∴EF=DE,
设DE=FE=x,则CG=3,EC=6−x.
在直角△ECG中,根据勾股定理,得:
(6−x)2+9=(x+3)2,
解得x=2.
则DE=2.
【点睛】
熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.
6、D
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项正确;
故选:D.
【点睛】
此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
7、A
【解析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可
【详解】
根据有理数比较大小的方法,可得
﹣4<﹣2<0<3
∴各数中,最小的数是﹣4
故选:A
【点睛】
本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小
8、C
【解析】
利用多边形的内角和公式列方程求解即可
【详解】
设这个多边形的边数为n.
由题意得:(n﹣2)×180°=4×180°.
解得:n=1.
答:这个多边形的边数为1.
故选C.
【点睛】
本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.
9、A
【解析】
让黄球的个数除以球的总个数即为所求的概率.
【详解】
解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
故选:A.
【点睛】
本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
10、D
【解析】
本题主要考查二次函数的解析式
【详解】
解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.
故选D.
【点睛】
本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.
二、填空题(共7小题,每小题3分,满分21分)
11、>
【解析】
试题解析:∵cos50°=sin40°,sin50°>sin40°,
∴sin50°>cos50°.
故答案为>.
点睛:当角度在0°~90°间变化时,
①正弦值随着角度的增大(或减小)而增大(或减小);
②余弦值随着角度的增大(或减小)而减小(或增大);
③正切值随着角度的增大(或减小)而增大(或减小).
12、
【解析】
列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
【详解】
解:列表如下:
5
6
7
8
9
5
﹣﹣﹣
(6、5)
(7、5)
(8、5)
(9、5)
6
(5、6)
﹣﹣﹣
(7、6)
(8、6)
(9、6)
7
(5、7)
(6、7)
﹣﹣﹣
(8、7)
(9、7)
8
(5、8)
(6、8)
(7、8)
﹣﹣﹣
(9、8)
9
(5、9)
(6、9)
(7、9)
(8、9)
﹣﹣﹣
所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
则P(恰好是两个连续整数)=
故答案为.
【点睛】
此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
13、4.1.
【解析】
取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.
【详解】
解:取CD的值中点M,连接GM,FM.
∵AG=CG,AE=EB,
∴GE是△ABC的中位线
∴EG=BC,
同理可证:FM=BC,EF=GM=AD,
∵AD=BC=6,
∴EG=EF=FM=MG=3,
∴四边形EFMG是菱形,
∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,
∴△EGF的面积的最大值为S四边形EFMG=4.1,
故答案为4.1.
【点睛】
本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.
14、x(x﹣2)(x﹣1)2
【解析】
先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.
【详解】
解:(x2−2x)2−(2x−x2) =(x2−2x)2+(x2−2x) =(x2−2x)(x2−2x+1) =x(x−2)(x−1)2
故答案为x(x﹣2)(x﹣1)2
【点睛】
此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.
15、y2<y1<y2
【解析】
分析:设t=k2﹣2k+2,配方后可得出t>1,利用反比例函数图象上点的坐标特征可求出y1、y2、y2的值,比较后即可得出结论.
详解:设t=k2﹣2k+2,
∵k2﹣2k+2=(k﹣1)2+2>1,
∴t>1.
∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函数y=(k为常数)的图象上,
∴y1=﹣,y2=﹣t,y2=t,
又∵﹣t<﹣<t,
∴y2<y1<y2.
故答案为:y2<y1<y2.
点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y2的值是解题的关键.
16、
【解析】
分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案.
详解:移项,得:ax﹣x=1,合并同类项,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程两边都除以a﹣1,得:x=.故答案为x=.
点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键.
17、(3,2)
【解析】
根据平移的性质即可得到结论.
【详解】
∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
∵-1+3=2,
∴0+3=3
∴A′(3,2),
故答案为:(3,2)
【点睛】
本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
三、解答题(共7小题,满分69分)
18、(1)P(两个小孩都是女孩)=;(2)P(三个小孩中恰好是2女1男)=.
【解析】
(1)画出树状图即可解题,(2)画出树状图即可解题.
【详解】
(1)画树状图如下:
由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,
∴P(两个小孩都是女孩)=.
(2)画树状图如下:
由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,
∴P(三个小孩中恰好是2女1男)=.
【点睛】
本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.
19、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
【解析】
试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
(2)求出OH、PH的值即可判断;
试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.
20、(1)80,12,28;(2)36°;(3)140人;(4)
【解析】
(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;
(2)用E组所占的百分比乘以360°得到α的值;
(3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;
(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.
【详解】
(1)24÷30%=80,
所以样本容量为80;
m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;
故答案为80,12,28;
(2)E等级对应扇形的圆心角α的度数=×360°=36°;
(3)700×=140,
所以估计体育测试成绩在A、B两个等级的人数共有140人;
(4)画树状图如下:
共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,
所以恰好抽到甲和乙的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
21、(1)作图见解析;(2)作图见解析.
【解析】
试题分析:利用正六边形的特性作图即可.
试题解析:(1)如图所示(答案不唯一):
(2)如图所示(答案不唯一):
22、(1);(2) (3,-4) 或(5,4)或(-5,4)
【解析】
(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;
(2)先画出存在的点,然后通过平移和计算确定坐标;
【详解】
解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)
设抛物线的解析式为y=ax2+bx+c
则有: 解得
所以函数解析式为:
(2)存在,(3,-4) 或(5,4)或(-5,4)
理由如下:如图:
P1相当于C点向右平移了5个单位长度,则坐标为(5,4);
P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);
设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,
则有A P3=BC, B P3=AC
∴ 即 (舍去)
P3坐标为(3,-4)
【点睛】
本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.
23、(1);(2);(2)小贝的说法正确,理由见解析,.
【解析】
(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;
(2)补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,由勾股定理可得AO长,易求AP长;
(1)小贝的说法正确,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长.
【详解】
解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.
∵△DCE为等边三角形,
∴ED=EC,
∵OD=OC
∴OE垂直平分DC,
∴DHDC=1.
∵四边形ABCD为正方形,
∴△OHD为等腰直角三角形,
∴OH=DH=1,
在Rt△DHE中,
HEDH=1,
∴OE=HE+OH=11;
(2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,
在Rt△AOD中,AD=6,DO=1,
∴AO1,
∴AP=AO+OP=11;
(1)小贝的说法正确.理由如下,
如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,
由题意知,点N为AD的中点,,
∴ANAD=1.6,ON⊥AD,
在Rt△ANO中,
设AO=r,则ON=r﹣1.2.
∵AN2+ON2=AO2,
∴1.62+(r﹣1.2)2=r2,
解得:r,
∴AE=ON1.2,
在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,
∴BO,
∴BP=BO+PO,
∴门角B到门窗弓形弧AD的最大距离为.
【点睛】
本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.
24、 (1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)
【解析】
(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;
(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.
【详解】
(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,
∴﹣a+3=2,b=﹣×4+3,
∴a=2,b=1,
∴点A的坐标为(2,2),点B的坐标为(4,1),
又∵点A(2,2)在反比例函数y=的图象上,
∴k=2×2=4,
∴反比例函数的表达式为y=(x>0);
(2)延长CA交y轴于点E,延长CB交x轴于点F,
∵AC∥x轴,BC∥y轴,
则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)
∴四边形OECF为矩形,且CE=4,CF=2,
∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF
=2×4﹣×2×2﹣×4×1
=4,
设点P的坐标为(0,m),
则S△OAP=×2•|m|=4,
∴m=±4,
∴点P的坐标为(0,4)或(0,﹣4).
【点睛】
此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
广东省广州市白云区华师附中新世界学校2023-2024学年八上数学期末经典试题含答案: 这是一份广东省广州市白云区华师附中新世界学校2023-2024学年八上数学期末经典试题含答案,共7页。试卷主要包含了下列运算结果正确的是,下列国旗中,不是轴对称图形的是,在下列实数中,无理数是,下列计算正确的是等内容,欢迎下载使用。
广东省华师附中实验校2022年中考试题猜想数学试卷含解析: 这是一份广东省华师附中实验校2022年中考试题猜想数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022学年广州市白云区中考联考数学试卷含解析: 这是一份2021-2022学年广州市白云区中考联考数学试卷含解析,共20页。试卷主要包含了在实数,有理数有等内容,欢迎下载使用。