2021-2022学年安徽省合肥高新区中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=的图象恰好经过点A′、B,则k的值是( )
A.9 B. C. D.3
2.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )
A.32° B.30° C.38° D.58°
3.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )
A. B. C. D.
4.下列函数中,y关于x的二次函数是( )
A.y=ax2+bx+c B.y=x(x﹣1)
C.y= D.y=(x﹣1)2﹣x2
5.四个有理数﹣1,2,0,﹣3,其中最小的是( )
A.﹣1 B.2 C.0 D.﹣3
6.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是( )
A.7 B.10 C.11 D.12
7.方程的解是( ).
A. B. C. D.
8.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
A.13 B.11或13 C.11 D.12
9.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )
A. B. C. D.
10.在△ABC中,AB=AC=13,BC=24,则tanB等于( )
A. B. C. D.
11.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是( )
A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16
12.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为( )
A. B. C. D.1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、B在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)
14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.
15.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点 B,则△OAC 与△BAD 的面积之差 S△OAC﹣S△BAD 为_______.
16.化简:÷(﹣1)=_____.
17.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.
18.函数y= 中,自变量x的取值范围是 _____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.
(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
20.(6分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;
(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.
21.(6分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC= °;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.
22.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
23.(8分)根据图中给出的信息,解答下列问题:
放入一个小球水面升高 ,,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?
24.(10分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是 ;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.
25.(10分)如图,四边形AOBC是正方形,点C的坐标是(4,0).正方形AOBC的边长为 ,点A的坐标是 .将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).
26.(12分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.
27.(12分)计算:-2-2 - + 0
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
设B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根据相似三角形或锐角三角函数可求得A′(,),根据反比例函数性质k=xy建立方程求k.
【详解】
如图,过点C作CD⊥x轴于D,过点A′作A′G⊥x轴于G,连接AA′交射线OC于E,过E作EF⊥x轴于F,
设B(,2),
在Rt△OCD中,OD=3,CD=2,∠ODC=90°,
∴OC==,
由翻折得,AA′⊥OC,A′E=AE,
∴sin∠COD=,
∴AE=,
∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,
∴∠OAE=∠OCD,
∴sin∠OAE==sin∠OCD,
∴EF=,
∵cos∠OAE==cos∠OCD,
∴,
∵EF⊥x轴,A′G⊥x轴,
∴EF∥A′G,
∴,
∴,,
∴,
∴A′(,),
∴,
∵k≠0,
∴,
故选C.
【点睛】
本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.
2、A
【解析】
根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
【详解】
解:∵∠B=58°,
∴∠AOC=116°,
∵OA=OC,
∴∠C=∠OAC=32°,
故选:A.
【点睛】
此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
3、D
【解析】
延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.
【详解】
解:延长BO交⊙O于D,连接CD,
则∠BCD=90°,∠D=∠A=60°,
∴∠CBD=30°,
∵BD=2R,
∴DC=R,
∴BC=R,
故选D.
【点睛】
此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.
4、B
【解析】
判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.
【详解】
A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意;
B. y=x(x﹣1)=x2-x,是二次函数,故符合题意;
C. 的自变量在分母中,不是二次函数,故不符合题意;
D. y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;
故选B.
【点睛】
本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.
5、D
【解析】
解:∵-1<-1<0<2,∴最小的是-1.故选D.
6、B
【解析】
∵四边形ABCD是平行四边形,
∴AD=BC=4,CD=AB=6,
∵由作法可知,直线MN是线段AC的垂直平分线,
∴AE=CE,
∴AE+DE=CE+DE=AD,
∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.
故选B.
7、B
【解析】
直接解分式方程,注意要验根.
【详解】
解:=0,
方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
解这个一元一次方程,得:x=,
经检验,x=是原方程的解.
故选B.
【点睛】
本题考查了解分式方程,解分式方程不要忘记验根.
8、B
【解析】
试题解析:x2-8x+15=0,
分解因式得:(x-3)(x-5)=0,
可得x-3=0或x-5=0,
解得:x1=3,x2=5,
若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
综上,△ABC的周长为11或1.
故选B.
考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
9、A
【解析】
试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.
解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,
从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
综上所知这个几何体是圆柱.
故选A.
考点:由三视图判断几何体.
10、B
【解析】
如图,等腰△ABC中,AB=AC=13,BC=24,
过A作AD⊥BC于D,则BD=12,
在Rt△ABD中,AB=13,BD=12,则,
AD=,
故tanB=.
故选B.
【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.
11、C
【解析】
试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.
∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,
∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.
12、C
【解析】
延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
【详解】
解:延长BC′交AB′于D,连接BB',如图,
在Rt△AC′B′中,AB′=AC′=2,
∵BC′垂直平分AB′,
∴C′D=AB=1,
∵BD为等边三角形△ABB′的高,
∴BD=AB′=,
∴BC′=BD-C′D=-1.
故本题选择C.
【点睛】
熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、100(1+)
【解析】
分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.
详解:如图,
∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,
∴∠A=60°,∠B=45°,
在Rt△ACD中,∵tanA=,
∴AD==100,
在Rt△BCD中,BD=CD=100,
∴AB=AD+BD=100+100=100(1+).
答:A、B两点间的距离为100(1+)米.
故答案为100(1+).
点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
14、1.
【解析】
根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=8,AB=CD=6,∠ABC=90°,
∴
∵AO=OC,
∴
∵AO=OC,AM=MD=4,
∴
∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.
故答案为:1.
【点睛】
本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.
15、
【解析】
设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.
【详解】
设△OAC和△BAD的直角边长分别为a、b,
则B点坐标为(a+b,a-b)
∵点B在反比例函数y=在第一象限的图象上,
∴(a+b)(a-b)=a2-b2=3
∴S△OAC﹣S△BAD=a2-b2=
【点睛】
此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.
16、﹣.
【解析】
直接利用分式的混合运算法则即可得出.
【详解】
原式
.
故答案为:.
【点睛】
此题主要考查了分式的化简,正确掌握运算法则是解题关键.
17、
【解析】
首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案.
【详解】
∵如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,
∴指针落在惊蛰、春分、清明的概率是:.
故答案为
【点睛】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
18、x≠﹣.
【解析】
该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.
【详解】
解:根据分式有意义的条件得:2x+3≠1
解得:
故答案为
【点睛】
本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
【解析】
(1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
【详解】
(Ⅰ)设OD为x,
∵点A(3,0),点B(0,),
∴AO=3,BO=
∴AB=6
∵折叠
∴BD=DA
在Rt△ADO中,OA1+OD1=DA1.
∴9+OD1=(﹣OD)1.
∴OD=
∴D(0,)
(Ⅱ)∵折叠
∴∠BDC=∠CDO=90°
∴CD∥OA
∴且BD=AC,
∴
∴BD=﹣18
∴OD=﹣(﹣18)=18﹣
∵tan∠ABO=,
∴∠ABC=30°,即∠BAO=60°
∵tan∠ABO=,
∴CD=11﹣6
∴D(11﹣6,11﹣18)
(Ⅲ)如图:过点C作CE⊥AO于E
∵CE⊥AO
∴OE=1,且AO=3
∴AE=1,
∵CE⊥AO,∠CAE=60°
∴∠ACE=30°且CE⊥AO
∴AC=1,CE=
∵BC=AB﹣AC
∴BC=6﹣1=4
若点B'落在A点右边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=1+
∴B'(1+,0)
若点B'落在A点左边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=﹣1
∴B'(1﹣,0)
综上所述:B'(1+,0),(1﹣,0)
【点睛】
本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
20、 (1) y=x2﹣x;(2)点P坐标为(0,)或(0,);(3).
【解析】
(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;
(2)∠EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;
(3)如图,取Q(,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是线段AQ的长.
【详解】
(1)过点A作AH⊥x轴于点H,
∵AO=OB=2,∠AOB=120°,
∴∠AOH=60°,
∴OH=1,AH=,
∴A点坐标为:(-1,),B点坐标为:(2,0),
将两点代入y=ax2+bx得:
,
解得:,
∴抛物线的表达式为:y=x2-x;
(2)如图,
∵C(1,-),
∴tan∠EOC=,
∴∠EOC=30°,
∴∠POC=90°+30°=120°,
∵∠AOE=120°,
∴∠AOE=∠POC=120°,
∵OA=2OE,OC=,
∴当OP=OC或OP′=2OC时,△POC与△AOE相似,
∴OP=,OP′=,
∴点P坐标为(0,)或(0,).
(3)如图,取Q(,0).连接AQ,QE′.
∵
,∠QOE′=∠BOE′,
∴△OE′Q∽△OBE′,
∴,
∴E′Q=BE′,
∴AE′+BE′=AE′+QE′,
∵AE′+E′Q≥AQ,
∴E′A+E′B的最小值就是线段AQ的长,最小值为.
【点睛】
本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.
21、(1)125;(2)详见解析;(3)45°<α<90°.
【解析】
(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;
(2)证明△ABC≌△EDC(AAS)即可求解;
(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.
【详解】
(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,
而∠ADC+∠EDC=180°,
∴∠ABC=∠PDC=α=125°,
故答案为125;
(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,
∴∠ACB=∠ECD,
又BC=DC,由(1)知:∠ABC=∠PDC,
∴△ABC≌△EDC(AAS),
∴AC=CE;
(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.
【点睛】
本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.
22、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
23、详见解析
【解析】
(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可.
(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.
【详解】
解:(1)设一个小球使水面升高x厘米,由图意,得2x=21﹣16,解得x=1.
设一个大球使水面升高y厘米,由图意,得1y=21﹣16,解得:y=2.
所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm.
(1)设应放入大球m个,小球n个,由题意,得
,解得:.
答:如果要使水面上升到50cm,应放入大球4个,小球6个.
24、(1)10;(2);(3)9环
【解析】
(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.
(2)先求这组成绩的平均数,再求这组成绩的方差;
(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.
【详解】
解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;
(2)嘉淇射击成绩的平均数为:,
方差为: .
(3)原来7次成绩为7 8 9 9 10 10 10,
原来7次成绩的中位数为9,
当第8次射击成绩为10时,得到8次成绩的中位数为9.5,
当第8次射击成绩小于10时,得到8次成绩的中位数均为9,
因此第8次的射击成绩的最大环数为9环.
【点睛】
本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.
25、(1)4,;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3).
【解析】
(1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;
(2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;
(3)根据P、Q点在不同的线段上运动情况,可分为三种列式①当点P、Q分别在OA、OB时,②当点P在OA上,点Q在BC上时,③当点P、Q在AC上时,可方程得出t.
【详解】
解:(1)连接AB,与OC交于点D,
四边形是正方形,
∴△OCA为等腰Rt△,
∴AD=OD=OC=2,
∴点A的坐标为.
4,.
(2)如图
∵ 四边形是正方形,
∴,.
∵ 将正方形绕点顺时针旋转,
∴ 点落在轴上.
∴.
∴ 点的坐标为.
∵,
∴.
∵ 四边形,是正方形,
∴,.
∴,.
∴.
∴.
∵,
,
∴ .
∴旋转后的正方形与原正方形的重叠部分的面积为.
(3)设t秒后两点相遇,3t=16,∴t=
①当点P、Q分别在OA、OB时,
∵,OP=t,OQ=2t
∴不能为等腰三角形
②当点P在OA上,点Q在BC上时如图2,
当OQ=QP,QM为OP的垂直平分线,
OP=2OM=2BQ,OP=t,BQ=2t-4,
t=2(2t-4),
解得:t=.
③当点P、Q在AC上时,
不能为等腰三角形
综上所述,当时是等腰三角形
【点睛】
此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.
26、(1);(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.
【解析】
【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;
(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.
【详解】(1)∵点A在直线y1=1x﹣1上,
∴设A(x,1x﹣1),
过A作AC⊥OB于C,
∵AB⊥OA,且OA=AB,
∴OC=BC,
∴AC=OB=OC,
∴x=1x﹣1,
x=1,
∴A(1,1),
∴k=1×1=4,
∴;
(1)∵,解得:,,
∴C(﹣1,﹣4),
由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.
【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.
27、
【解析】
直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.
【详解】
解:原式=
【点睛】
本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.
安徽省合肥市第四十八中学2021-2022学年中考数学押题试卷含解析: 这是一份安徽省合肥市第四十八中学2021-2022学年中考数学押题试卷含解析,共19页。
安徽省合肥市高新区2021-2022学年中考数学猜题卷含解析: 这是一份安徽省合肥市高新区2021-2022学年中考数学猜题卷含解析,共21页。试卷主要包含了把a•的根号外的a移到根号内得等内容,欢迎下载使用。
安徽省合肥市包河区2022年中考数学押题试卷含解析: 这是一份安徽省合肥市包河区2022年中考数学押题试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列方程中,没有实数根的是等内容,欢迎下载使用。