山东省泰安泰山区七校联考2022年十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.估算的值在( )
A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间
2.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )
A.30° B.40° C.50° D.60°
3.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有( )
A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<0
4.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )
A. B. C. D.
5.如图所示,的顶点是正方形网格的格点,则的值为( )
A. B. C. D.
6.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是( )
A.27分钟 B.20分钟 C.13分钟 D.7分钟
7.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )
A.或 B.或 C.或 D.或
8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:
下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
A.① B.② C.①③ D.②③
9.如图,在矩形 ABCD 中,AB=2a,AD=a,矩形边上一动点 P 沿 A→B→C→D 的路径移动.设点 P 经过的路径长为 x,PD2=y,则下列能大致反映 y 与 x 的函数关系的图象是( )
A. B.
C. D.
10.下列计算正确的是( )
A. B.(﹣a2)3=a6 C. D.6a2×2a=12a3
二、填空题(共7小题,每小题3分,满分21分)
11.计算:﹣|﹣2|+()﹣1=_____.
12.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.
13.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.
14.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为_____.
15.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.
16.如图,将△AOB绕点按逆时针方向旋转后得到,若,则的度数是 _______.
17.已知方程x2﹣5x+2=0的两个解分别为x1、x2,则x1+x2﹣x1•x2的值为______.
三、解答题(共7小题,满分69分)
18.(10分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
19.(5分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|
20.(8分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
21.(10分)已知:如图,∠ABC,射线BC上一点D.
求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.
22.(10分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.
23.(12分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
(1)求每千克A级别茶叶和B级别茶叶的销售利润;
(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
24.(14分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
由可知56,即可解出.
【详解】
∵
∴56,
故选C.
【点睛】
此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.
2、C
【解析】
试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.
∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.
∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.
故选C.
考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.
3、D
【解析】
当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.
4、C
【解析】
左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确.
故此题选C.
5、B
【解析】
连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.
【详解】
解:连接CD(如图所示),设小正方形的边长为,
∵BD=CD==,∠DBC=∠DCB=45°,
∴,
在中,,,则.
故选B.
【点睛】
本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.
6、C
【解析】
先利用待定系数法求函数解析式,然后将y=35代入,从而求解.
【详解】
解:设反比例函数关系式为:,将(7,100)代入,得k=700,
∴,
将y=35代入,
解得;
∴水温从100℃降到35℃所用的时间是:20-7=13,
故选C.
【点睛】
本题考查反比例函数的应用,利用数形结合思想解题是关键.
7、A
【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
【详解】
当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,
∵
∴
∵AB是直径
即
∴
∴点M的轨迹是以EF为直径的半圆,
∵
∴以EF为直径的圆的半径为1
∴点M运动的路径长为
当 时,同理可得点M运动的路径长为
故选:A.
【点睛】
本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
8、B
【解析】
根据图形和各个小题的说法可以判断是否正确,从而解答本题
【详解】
当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
故选:B.
【点睛】
此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.
9、D
【解析】
解:(1)当0≤t≤2a时,∵,AP=x,∴;
(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵,∴=;
(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;
综上,可得,∴能大致反映y与x的函数关系的图象是选项D中的图象.故选D.
10、D
【解析】
根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.
【详解】
,A选项错误;(﹣a2)3=- a6,B错误;,C错误;. 6a2×2a=12a3 ,D正确;故选:D.
【点睛】
本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、﹣1
【解析】
根据立方根、绝对值及负整数指数幂等知识点解答即可.
【详解】
原式= -2 -2+3= -1
【点睛】
本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.
12、
【解析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.
【详解】
解:∵∠BOC=60°,∠BCO=90°,
∴∠OBC=30°,
∴OC=OB=1
则边BC扫过区域的面积为:
故答案为.
【点睛】
考核知识点:扇形面积计算.熟记公式是关键.
13、(1,4).
【解析】
试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).
考点:抛物线的顶点.
14、
【解析】
分析:以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.
详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°.∵⊙O的直径为AB,C为的中点,∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的.又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.
故答案为2π.
点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.
15、1
【解析】
分析:根据同时同地的物高与影长成正比列式计算即可得解.
详解:设这栋建筑物的高度为xm,
由题意得,,
解得x=1,
即这栋建筑物的高度为1m.
故答案为1.
点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.
16、60°
【解析】
根据题意可得,根据已知条件计算即可.
【详解】
根据题意可得:
,
故答案为60°
【点睛】
本题主要考查旋转角的有关计算,关键在于识别那个是旋转角.
17、1
【解析】
解:根据题意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案为:1.
点睛:本题主要考查了根据与系数的关系,利用一元二次方程的两个根x1、x2具有这样的关系:x1+x2=,x1x2=是解题的关键.
三、解答题(共7小题,满分69分)
18、-17.1
【解析】
按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
【详解】
解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
=﹣8﹣14﹣9÷(﹣2),
=﹣62+4.1,
=﹣17.1.
【点睛】
此题要注意正确掌握运算顺序以及符号的处理.
19、1
【解析】
原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.
【详解】
解:原式=1﹣1×+1+=1﹣+1+=1.
【点睛】
此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.
20、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.
【解析】
试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;
(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;
(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.
试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:.
答:孔明同学测试成绩位90分,平时成绩为95分;
(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.
(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥1.
答:他的测试成绩应该至少为1分.
考点:一元一次不等式的应用;二元一次方程组的应用.
21、作图见解析.
【解析】
由题意可知,先作出∠ABC的平分线,再作出线段BD的垂直平分线,交点即是P点.
【详解】
∵点P到∠ABC两边的距离相等,
∴点P在∠ABC的平分线上;
∵线段BD为等腰△PBD的底边,
∴PB=PD,
∴点P在线段BD的垂直平分线上,
∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,
如图所示:
【点睛】
此题主要考查了尺规作图,正确把握角平分线的性质和线段垂直平分线的性质是解题的关键.
22、1m
【解析】
连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.
【详解】
连接AN、BQ,
∵点A在点N的正北方向,点B在点Q的正北方向,
∴AN⊥l,BQ⊥l,
在Rt△AMN中:tan∠AMN=,
∴AN=1,
在Rt△BMQ中:tan∠BMQ=,
∴BQ=30,
过B作BE⊥AN于点E,
则BE=NQ=30,
∴AE=AN-BQ=30,
在Rt△ABE中,
AB2=AE2+BE2,
AB2=(30)2+302,
∴AB=1.
答:湖中两个小亭A、B之间的距离为1米.
【点睛】
本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
23、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
【解析】
试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.
试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.
由题意,
解得,
答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.
由题意w=100a+150(200﹣a)=﹣50a+30000,
∵﹣50<0,
∴w随x的增大而减小,
∴当a取最小值,w有最大值,
∵200﹣a≤2a,
∴a≥,
∴当a=67时,w最小=﹣50×67+30000=26650(元),
此时200﹣67=133kg,
答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.
24、37
【解析】
试题分析:过点作交于点.构造直角三角形,在中,计算出,在中, 计算出.
试题解析:如图所示:过点作交于点.
在中,
又∵在中,
答:的长度为
山东省临沂兰陵县联考2022年十校联考最后数学试题含解析: 这是一份山东省临沂兰陵县联考2022年十校联考最后数学试题含解析,共15页。试卷主要包含了答题时请按要求用笔,下列因式分解正确的是,方程的解为,下列说法中不正确的是等内容,欢迎下载使用。
2022年山东省临沂郯城县联考十校联考最后数学试题含解析: 这是一份2022年山东省临沂郯城县联考十校联考最后数学试题含解析,共23页。试卷主要包含了如果,那么的值为,若 ,则括号内的数是等内容,欢迎下载使用。
2022届山东省蒙阴十校联考最后数学试题含解析: 这是一份2022届山东省蒙阴十校联考最后数学试题含解析,共23页。试卷主要包含了|﹣3|的值是等内容,欢迎下载使用。