|试卷下载
搜索
    上传资料 赚现金
    2022届浙江省台州市温岭市实验校中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022届浙江省台州市温岭市实验校中考适应性考试数学试题含解析01
    2022届浙江省台州市温岭市实验校中考适应性考试数学试题含解析02
    2022届浙江省台州市温岭市实验校中考适应性考试数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省台州市温岭市实验校中考适应性考试数学试题含解析

    展开
    这是一份2022届浙江省台州市温岭市实验校中考适应性考试数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是(  )

    A.75° B.65° C.60° D.50°
    2.如图,空心圆柱体的左视图是( )

    A. B. C. D.
    3.如图,若a∥b,∠1=60°,则∠2的度数为(  )

    A.40° B.60° C.120° D.150°
    4.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是(  )

    A.a+b<0 B.a>|﹣2| C.b>π D.
    5.下面几何的主视图是( )

    A. B. C. D.
    6.△ABC在正方形网格中的位置如图所示,则cosB的值为( )

    A. B. C. D.2
    7.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1 A.–2 8.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )

    A.8,9 B.8,8.5 C.16,8.5 D.16,10.5
    9.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是  
    A. B. C. D.
    10.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若3,a,4,5的众数是4,则这组数据的平均数是_____.
    12.若关于的不等式组无解, 则的取值范围是 ________.
    13.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.

    14.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.

    15.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.

    16.若4a+3b=1,则8a+6b-3的值为______.
    三、解答题(共8题,共72分)
    17.(8分)在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.
    (1)求抛物线的表达式;
    (2)求∠CAB的正切值;
    (3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.

    18.(8分)阅读
    (1)阅读理解:

    如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
    解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
    中线AD的取值范围是________;
    (2)问题解决:
    如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
    (3)问题拓展:
    如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
    19.(8分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
    (1)判断△ABC的形状,并证明你的结论;
    (2)如图1,若BE=CE=,求⊙A的面积;
    (3)如图2,若tan∠CEF=,求cos∠C的值.

    20.(8分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.

    21.(8分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.
    (1)试判断直线CD与⊙O的位置关系,并说明理由;
    (2)若AD=2,AC=,求AB的长.

    22.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
    23.(12分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:

    (1)接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形的圆心角为   度;
    (2)请补全条形统计图;
    (3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
    24.如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,又因为∠B=∠C,所以∠C的度数可求出.
    解:∵AB是⊙O的直径,
    ∴∠ADB=90°.
    ∵∠BAD=25°,
    ∴∠B=65°,
    ∴∠C=∠B=65°(同弧所对的圆周角相等).
    故选B.

    2、C
    【解析】
    根据从左边看得到的图形是左视图,可得答案.
    【详解】
    从左边看是三个矩形,中间矩形的左右两边是虚线,
    故选C.
    【点睛】
    本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
    3、C
    【解析】
    如图:

    ∵∠1=60°,
    ∴∠3=∠1=60°,
    又∵a∥b,
    ∴∠2+∠3=180°,
    ∴∠2=120°,
    故选C.
    点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.
    4、D
    【解析】
    根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.
    【详解】
    a=﹣2,2<b<1.
    A.a+b<0,故A不符合题意;
    B.a<|﹣2|,故B不符合题意;
    C.b<1<π,故C不符合题意;
    D.<0,故D符合题意;
    故选D.
    【点睛】
    本题考查了实数与数轴,利用有理数的运算是解题关键.
    5、B
    【解析】
    主视图是从物体正面看所得到的图形.
    【详解】
    解:从几何体正面看
    故选B.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
    6、A
    【解析】
    解:在直角△ABD中,BD=2,AD=4,则AB=,
    则cosB=.
    故选A.

    7、B
    【解析】
    设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.
    【详解】
    设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)
    ∵y=0时,x=-2或x=3,
    ∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),
    ∵1﹣(x﹣3)(x+2)=0,
    ∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,
    ∵-1<0,
    ∴两个抛物线的开口向下,
    ∴x1<﹣2<3<x2,
    故选B.
    【点睛】
    本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.
    8、A
    【解析】
    根据中位数、众数的概念分别求得这组数据的中位数、众数.
    【详解】
    解:众数是一组数据中出现次数最多的数,即8;
    而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.
    故选A.
    【点睛】
    考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
    9、D
    【解析】
    本题主要考查二次函数的解析式
    【详解】
    解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.
    故选D.
    【点睛】
    本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.
    10、A
    【解析】
    根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.
    【详解】
    现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.
    依题意得:,
    故选A.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、4
    【解析】
    试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.
    试题解析:∵3,a,4,5的众数是4,
    ∴a=4,
    ∴这组数据的平均数是(3+4+4+5)÷4=4.
    考点:1.算术平均数;2.众数.
    12、
    【解析】
    首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.
    【详解】

    解①得:x>a+3,
    解②得:x<1.
    根据题意得:a+3≥1,
    解得:a≥-2.
    故答案是:a≥-2.
    【点睛】
    本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..
    13、
    【解析】
    解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.
    14、
    【解析】
    过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
    【详解】
    解:过点B作BF⊥OC于点F,

    由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
    ∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
    ∵,
    ∴,,
    ∵AD∥BF
    ∴S△BCF∽S△ACD,
    又∵,
    ∴BF:AD=2:5,
    ∵S△OAD=S△OBF,
    ∴×OD×AD =×OF×BF
    ∴BF:AD=2:5= OD:OF
    易证:S△OED∽S△OBF,
    ∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
    ∵S四边形EDFB=,
    ∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
    ∴k=2 S△OBF=.
    故答案为.
    【点睛】
    本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
    15、17
    【解析】
    ∵8是出现次数最多的,∴众数是8,
    ∵这组数据从小到大的顺序排列,处于中间位置的两个数都是9,∴中位数是9,
    所以中位数与众数之和为8+9=17.
    故答案为17小时.
    16、-1
    【解析】
    先求出8a+6b的值,然后整体代入进行计算即可得解.
    【详解】
    ∵4a+3b=1,
    ∴8a+6b=2,
    8a+6b-3=2-3=-1;
    故答案为:-1.
    【点睛】
    本题考查了代数式求值,整体思想的利用是解题的关键.

    三、解答题(共8题,共72分)
    17、(4)y=﹣x4﹣4x+3;(4);(3)点P的坐标是(4,0)
    【解析】
    (4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为y=a(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;
    (4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;
    (3) 连接BC,可证得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入个数据可得OP的值,可得P点坐标.
    【详解】
    解:(4)由题意得,抛物线y=ax4+4ax+c的对称轴是直线,
    ∵a<0,抛物线开口向下,又与x轴有交点,
    ∴抛物线的顶点C在x轴的上方,
    由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(﹣4,4).
    可设此抛物线的表达式是y=a(x+4)4+4,
    由于此抛物线与x轴的交点A的坐标是(﹣3,0),可得a=﹣4.
    因此,抛物线的表达式是y=﹣x4﹣4x+3.
    (4)如图4,

    点B的坐标是(0,3).连接BC.
    ∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,
    得AB4+BC4=AC4.
    ∴△ABC为直角三角形,∠ABC=90°,
    所以tan∠CAB=.
    即∠CAB的正切值等于.
    (3)如图4,连接BC,
    ∵OA=OB=3,∠AOB=90°,
    ∴△AOB是等腰直角三角形,
    ∴∠BAP=∠ABO=45°,
    ∵∠CAO=∠ABP,
    ∴∠CAB=∠OBP,
    ∵∠ABC=∠BOP=90°,
    ∴△ACB∽△BPO,
    ∴,
    ∴,OP=4,
    ∴点P的坐标是(4,0).
    【点睛】
    本题主要考查二次函数的图像与性质,综合性大.
    18、(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.
    【解析】
    试题分析:(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;
    (2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;
    (3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.
    试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:
    ∵AD是BC边上的中线,
    ∴BD=CD,
    在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,
    ∴△BDE≌△CDA(SAS),
    ∴BE=AC=6,
    在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,
    ∴10﹣6<AE<10+6,即4<AE<16,
    ∴2<AD<8;
    故答案为2<AD<8;
    (2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:
    同(1)得:△BMD≌△CFD(SAS),
    ∴BM=CF,
    ∵DE⊥DF,DM=DF,
    ∴EM=EF,
    在△BME中,由三角形的三边关系得:BE+BM>EM,
    ∴BE+CF>EF;
    (3)解:BE+DF=EF;理由如下:
    延长AB至点N,使BN=DF,连接CN,如图3所示:
    ∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,
    ∴∠NBC=∠D,
    在△NBC和△FDC中,
    BN=DF,∠NBC =∠D,BC=DC,
    ∴△NBC≌△FDC(SAS),
    ∴CN=CF,∠NCB=∠FCD,
    ∵∠BCD=140°,∠ECF=70°,
    ∴∠BCE+∠FCD=70°,
    ∴∠ECN=70°=∠ECF,
    在△NCE和△FCE中,
    CN=CF,∠ECN=∠ECF,CE=CE,
    ∴△NCE≌△FCE(SAS),
    ∴EN=EF,
    ∵BE+BN=EN,
    ∴BE+DF=EF.

    考点:全等三角形的判定和性质;三角形的三边关系定理.
    19、 (1) △ABC为直角三角形,证明见解析;(2)12π;(3).
    【解析】
    (1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tan∠C= 再求出cos∠C即可.
    【详解】
    解:∵,
    ∴,
    ∴△CEF∽△CBE,
    ∴∠CBE=∠CEF,
    ∵AE=AD,
    ∴∠ADE=∠AED=∠FEC=∠CBE,
    ∵BD为直径,
    ∴∠ADE+∠ABE=90°,
    ∴∠CBE+∠ABE=90°,
    ∴∠DBC=90°△ABC为直角三角形.
    (2)∵BE=CE
    ∴设∠EBC=∠ECB=x,
    ∴∠BDE=∠EBC=x,
    ∵AE=AD
    ∴∠AED=∠ADE=x,
    ∴∠CEF=∠AED=x
    ∴∠BFE=2x
    在△BDF中由△内角和可知:
    3x=90°
    ∴x=30°
    ∴∠ABE=60°
    ∴AB=BE=

    (3)由(1)知:∠D=∠CFE=∠CBE,
    ∴tan∠CBE=,
    设EF=a,BE=2a,
    ∴BF=,BD=2BF=,
    ∴AD=AB=,
    ∴,DE=2BE=4a,过F作FK∥BD交CE于K,
    ∴,  
    ∵, 

    ∴,
    ∴tan∠C=
    ∴cos∠C=.

    【点睛】
    此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.
    20、(1)答案见解析;(2).
    【解析】
    (1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.
    (2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.
    【详解】
    解:(1)列表如下:

    所有等可能的情况有12种;
    (2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,
    则P== .
    21、(1)证明见解析(2)3
    【解析】
    (1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;
    (2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.
    【详解】
    相切,连接,
    ∵为的中点,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,

    ∴直线与相切;
    方法:连接,
    ∵,,
    ∵,
    ∴,
    ∵是的切线,
    ∴,
    ∴,
    ∴,
    ∵为的中点,
    ∴,
    ∵为的直径,
    ∴,
    ∴.
    方法:∵,
    易得,
    ∴,
    ∴.
    【点睛】
    本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.
    22、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
    【解析】
    (1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.
    (2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.
    (3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.
    【详解】
    (1)根据题意得:
    y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,
    自变量x的取值范围是:0<x≤10且x为正整数;
    (2)当y=2520时,得﹣10x2+130x+2300=2520,
    解得x1=2,x2=11(不合题意,舍去)
    当x=2时,30+x=32(元)
    答:每件玩具的售价定为32元时,月销售利润恰为2520元.
    (3)根据题意得:
    y=﹣10x2+130x+2300
    =﹣10(x﹣6.5)2+2722.5,
    ∵a=﹣10<0,
    ∴当x=6.5时,y有最大值为2722.5,
    ∵0<x≤10且x为正整数,
    ∴当x=6时,30+x=36,y=2720(元),
    当x=7时,30+x=37,y=2720(元),
    答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.
    【点睛】
    本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.
    23、 (1) 60,90;(2)见解析;(3) 300人
    【解析】
    (1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
    (2)由(1)可求得了解的人数,继而补全条形统计图;
    (3)利用样本估计总体的方法,即可求得答案.
    【详解】
    解:(1)∵了解很少的有30人,占50%,
    ∴接受问卷调查的学生共有:30÷50%=60(人);
    ∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
    故答案为60,90;
    (2)60﹣15﹣30﹣10=5;
    补全条形统计图得:

    (3)根据题意得:900×=300(人),
    则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
    【点睛】
    本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
    24、(1)详见解析;(2)6
    【解析】
    (1)连接CD,证明即可得到结论;
    (2)设圆O的半径为r,在Rt△BDO中,运用勾股定理即可求出结论.
    【详解】
    (1)证明:连接CD,





    .
    (2)设圆O的半径为,,
    设.
    【点睛】
    本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.

    相关试卷

    2023年浙江省台州市温岭市中考数学一模试卷(含解析): 这是一份2023年浙江省台州市温岭市中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省台州市温岭市中考数学一模试卷(含解析): 这是一份2023年浙江省台州市温岭市中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省台州市温岭市实验校2022年中考联考数学试题含解析: 这是一份浙江省台州市温岭市实验校2022年中考联考数学试题含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map