专练09(30题)(简单方程类应用题)2022中考数学考点必杀500题(江西专用)
展开2022中考考点必杀500题
专练09(简单方程类应用题)(30道)
1.(2022·江西·二模)某酒店客房部有三人间通客房、双人间普通客房,收费标准为三人间150元/间,双人间140元/间.为了吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团优惠期间到该酒店入住,住了三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去1310元,则该旅游团住了三人间普通客房和双人间普通客房各多少间?
2.(2022·江西南昌·一模)香香猪肉铺10月五花肉售价约30元/千克,后受市场供需关系影响,五花肉价格逐月上涨,12月五花肉售价约为36.3元/千克,若在此期间五花肉价格每月增长率相同.
(1)求此期间五花肉价格月增长率.
(2)11月某天小刚妈妈用99元在香香猪肉铺买了一些五花肉包饺子,请问她买了多少五花肉.
3.(2022·江西宜春·一模)政府为应对新冠疫情,促进经济发展,对商家打折销售进行了补贴,不打折时,6个A商品,5个B商品,总费用为114元,3个A商品,7个B商品,总费用为111元,打折后,小明购买了9个A商品和8个B商品共用了141.6元.
(1)求出商品A,B每个的标价;
(2)若商品A,B的折扣相同,商店打几折出售这两商品?小明在此次购物中得到了多少优惠?
4.(2022·江西·模拟预测)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:
地点 | 票价 |
历史博物馆 | 10元人 |
民俗展览馆 | 20元人 |
请问参观历史博物馆和民俗展览馆的人数各是多少人?
若学生都去参观历史博物馆,则能节省票款多少元?
5.(2022·江西省吉安市第五中学一模)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.
(1)该商店第一次购进水果多少千克;
(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?
注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.
6.(2021·江西上饶·二模)一项工程,乙队单独做需100天完成,若乙队先做30天后,甲、乙两队一起合作20天恰好完成任务,请问:
(1)甲队单独做需要多少天才能完成任务?
(2)现将该工程分成两部分,甲队做其中一部分工程用了m天,乙队做另一部分工程用了n天,若m、n都是正整数,且甲队做的时间不足11天,乙队做的时间不足80天,那么两队实际各做了多少天?
7.(2021·江西·赣州市赣县区教育教学研究室一模)有若干张全等的矩形卡纸.如图所示,用8张矩形卡纸可拼成如图1的大矩形;也可拼成如图2 的正方形,但中间还留有一个边长为8cm的小正方形.
(1)求每张卡纸的长和宽.
(2)在每张卡纸上,可以按图3裁剪出5个全等矩形,或按图4裁剪出3个全等矩形和10个全等正三角形(裁剪后边角料不再利用).用这些裁剪后的卡纸来制作正三棱柱盒子,每个正三棱柱盒子是由3个矩形侧面和2个正三角形底面组成;请通过计算说明,做好的正三棱柱盒子,最大能放入直径为多少cm的球体物品?(,结果精确到0.1)
(3)现有14张卡纸,按第(2)问中的方法裁剪好,制作成正三棱柱盒子,使裁剪出的侧面和底面恰好全部用完,14张卡纸是否能满足这个要求?若能满足,求所做的正三棱柱盒子的个数;若不能满足,则至少要增加多少张卡纸,才能满足要求?请说明你的理由.
8.(2021·江西南昌·二模)某超市购进甲、乙两种型号的空气加湿器进行销售,已知购进4台甲型号空气加湿器和6台乙型号空气加湿器共用1820元,购进6台甲型号空气加湿器比购进4台乙型号空气加湿器多用520元.
(1)求甲、乙两种型号的空气加湿器每台的进价.
(2)超市根据市场需求,决定购进这两种型号的空气加湿器共60台进行销售,甲种型号每台售价260元,乙种型号每台售价190元,若超市购进的这两种空气加湿器全部售出后,共获利2800元,则该超市本次购进甲、乙两种型号的空气加湿器各多少台?
9.(2021·江西·一模)随着我国汽车保有量的持续攀升,不仅给能源带来了危机,同时也给环境带来了巨大的危害.节能成为新世纪全球的主题,日益短缺的能源要求出现新的动力技术,混合动力可以比较好的解决燃油消耗问题和污染问题.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为60元;若完全用电做动力行驶,则费用为20元,已知汽车行驶中每千米用油费用比用电费用多0.5元.
(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?
(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过40元,则至少需要用电行驶多少千米?
10.(2021·江西·模拟预测)某校食堂的中餐与晚餐的消费标准如表
种类 | 单价 |
米饭 | 0.5元/份 |
A类套餐菜 | 3.5元/份 |
B类套餐菜 | 2.5元/份 |
一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A、B类套餐菜选其中一份,这5天共消费36元,请问这位学生A、B类套餐菜各选用多少次?
11.(2022·江西赣州·九年级期末)从下列两题中选择1题完成,两题都完成的仅批改第1题.
(1)第1题:某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对居住的每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?
第2题:张大爷佩戴能计步的运动手环进行快走锻炼,两次锻炼后整理数据如下表.与第一次锻炼相比,张大爷第二次锻炼时步数在增加,平均步长在减少,其中步数增长的百分率是其平均步长减少的百分率的3倍.设平均步长减少的百分率为x(0<x<0.5).
| 第一次锻炼 | 第二次锻炼 |
平均步长(米/步) | 0.6 | ①_________ |
步数(步) | 10000 | ②_________ |
距离(米) | 6000 | 7020 |
(2)根据题意完成表格填空①_________,②_________.
(3)求平均步长减少的百分率x;【温馨提示:数学运算可以先约分后化简】
(4)张大爷发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求张大爷这500米的平均步长.
12.(2022·江西上饶·九年级期末)(1)解方程:
(2)某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.请你估计纸箱中白球的数量接近多少?
13.(2022·江西上饶·九年级期末)某水果批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.
(1)若该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
(2)商场利润能否达到6200元,若能请求出每千克应涨价多少元;若不能,请说明理由.
14.(2022·江西上饶·九年级期末)为迎接“双十一”购物节,某网店计划销售某种网红食品,进价为20元/千克,经市场调研发现,该食品的售价x(元/千克)的范围为:20≤x≤50,日销售量y(千克)与售价x(元/千克)之间存在一次函数关系,部分图象如图所示:
(1)求y与x之间的函数解析式;
(2)该网店店主热心公益事业,决定从每天的销售利润中捐出200元给灾区,若捐款后店主的剩余利润是800元,求该食品的售价;
(3)若该食品的日销量不低于90千克,当售价为 元/千克时,每天获取的利润最大,最大利润是 元.
15.(2022·江西·上犹县教学研究室九年级期末)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;
(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:
购票方式 | 甲 | 乙 | 丙 |
可游玩景点 | 和 | ||
门票价格 | 100元/人 | 80元/人 | 160元/人 |
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
16.(2022·江西·南昌市第十九中学九年级阶段练习)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.
(1)求购买一个甲种、一个乙种笔记本各需多少元?
(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%?至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.
17.(2022·江西赣州·九年级期末)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第天(为整数)的售价、销量及储存和损耗费用的相关信息如表所示.
时间(天) | ||
售价(元/斤) | 第1次降价后的价格 | 第2次降价后的价格 |
销量(斤) | ||
储存和损耗费用(元) |
已知该种水果的进价为4.1元/斤,设销售该水果第(天)的利润为(元),求与()之间的函数解析式,并求出第几天时销售利润最大.
18.(2022·江西萍乡·九年级期末)爱好数学的甲、乙两个同学做了一个数字游戏:拿出三张正面写有数字﹣1,0,1且背面完全相同的卡片,将这三张卡片背面朝上洗匀后,甲先随机抽取一张,将所得数字作为p的值,然后将卡片放回并洗匀,乙再从这三张卡片中随机抽取一张,将所得数字作为q值,两次结果记为.
(1)请你帮他们用树状图或列表法表示所有可能出现的结果;
(2)求满足关于x的方程没有实数根的概率.
19.(2022·江西宜春·九年级期末)某商店将成本为每件60元的某商品标价100元出售.
(1)为了促销,该商品经过两次降低后每件售价为81元,若两次降价的百分率相同,求每次降价的百分率;
(2)经调查,该商品每降价2元,每月可多售出10件,若该商品按原标价出售,每月可销售100件,那么当销售价为多少元时,可以使该商品的月利润最大?最大的月利润是多少?
20.(2022·江西·永丰县恩江中学九年级阶段练习)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.
(1)求每个A型放大镜和每个B型放大镜各多少元;
(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?
21.(2021·江西上饶·九年级期中)直播购物逐渐走进了人们的生活,某电商在抖音上对一款成本价为8元的小商品进行直播销售,如果按每件10元销售,每天可卖出200件,通过市场调查发现,每件小商品售价每上涨1元,销售件数减少20件.
(1)应将每件售价定为多少元时,才能使每天利润为640元?
(2)电商想要获得每天800元的利润,小红同学认为不可能,那么你同意小红同学的说法吗?(说明理由)
22.(2021·江西上饶·九年级期中)某市新冠疫情防控应急指挥部要求全市18岁以上符合新冠疫苗接种的人群应打尽打,为落实这一要求,梅林区经统计7月份共有2500人接种,9月份增加到3600人,如果每月接种人数的增长率相同,求每月接种人数的平均增长率.
23.(2021·江西南昌·九年级阶段练习)新冠疫情期间药店采购N95口罩销售,该口罩每只的进价为12元,原定售价为16元,根据药店市场调研发现:平时每周的销售量400只,售价每涨1元销售量下降10只.若该口罩销售每周要获利2880元,才能保证正常采购需要的运输费和人工费,同时N95口销售价不得高于25元/只,问该药店需将N95口罩的售价格定为每只多少元?
24.(2021·江西赣州·九年级期中)去年6月,李克强总理提倡搞地摊经济,张明投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)如果张明想要每月获得的利润为2000元,那么张明每月的单价定为多少元?
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
25.(2021·江西赣州·九年级期中)某矩形工艺品长,宽,中间镶有宽度相同的三条丝绸花边.
(1)若丝绸花边的面积为768cm2,求丝绸花边的宽度.
(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,根据销售经验,销售单价每降低2元,每天可多售出40件,设销售单价降低元/件(为偶数),每天的销售量为件.
①直接写出与的函数关系式 .
②设每天的销售利润为W元,为了让利于顾客,请问应该把销售单价定为多少元,能使每天所获利润最大?最大利润是多少元?
26.(2021·江西南昌·九年级期中)【课本再现】要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排天,每天安排场比赛.
(1)①共有 场比赛;
②设比赛组织者应邀请个队参赛,每个队要与其他 个队各赛一场,因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛 场,列方程: .
【小试牛刀】(2)参加一次聚会的每两人都要握手一次,所有人共握手了次,有多少人参加聚会?
【综合运用】(3)将,,,……,,共个点每两个点连一条线段共得到条线段,将,,,……,.共个点每两个点连一条线段共得到条线段,问能否为整数?写出你的结论,并说明理由.
27.(2021·江西省临川第二中学九年级期中)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润.尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天赢利最多?
28.(2021·江西·南昌市第十九中学九年级阶段练习)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.
29.(2021·江西·中考真题)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.
(1)求这种商品的单价;
(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是______元/件,乙两次购买这种商品的平均单价是______元/件.
(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同______加油更合算(填“金额”或“油量”).
30.(2021·江西吉安·九年级期末)文文以0.2元/支的价格购进一批铅笔,以0.4元/支的价格售出,每天销售量为400支,销售了两天后他决定降价,尽早销售完毕经调查得知铅笔单价每降0.01元,每天的销售量增加20支.
(1)为了使笔每天的利润达到原利润的75%,文文应把铅笔定价多少元合适?
(2)如果这批铅笔恰好一共在五天内全部销售完毕,请问这批铅笔有多少支?
专练10(30题)(作图类大题)2022中考数学考点必杀500题(江西专用): 这是一份专练10(30题)(作图类大题)2022中考数学考点必杀500题(江西专用),文件包含专练1030题作图类大题2022中考数学考点必杀500题江西专用解析版docx、专练1030题作图类大题2022中考数学考点必杀500题江西专用原卷版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。
专练14(30题)(二次函数类压轴题)2022中考数学考点必杀500题(江西专用): 这是一份专练14(30题)(二次函数类压轴题)2022中考数学考点必杀500题(江西专用),文件包含专练1430题二次函数类压轴题2022中考数学考点必杀500题江西专用解析版docx、专练1430题二次函数类压轴题2022中考数学考点必杀500题江西专用原卷版docx等2份试卷配套教学资源,其中试卷共108页, 欢迎下载使用。
专练12(30题)(圆大题)2022中考数学考点必杀500题(江西专用): 这是一份专练12(30题)(圆大题)2022中考数学考点必杀500题(江西专用),文件包含专练1230题圆大题2022中考数学考点必杀500题江西专用解析版docx、专练1230题圆大题2022中考数学考点必杀500题江西专用原卷版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。