![华师大版数学九年级下册《圆》单元测试卷05(含答案)01](http://img-preview.51jiaoxi.com/2/3/12982174/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![华师大版数学九年级下册《圆》单元测试卷05(含答案)02](http://img-preview.51jiaoxi.com/2/3/12982174/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![华师大版数学九年级下册《圆》单元测试卷05(含答案)03](http://img-preview.51jiaoxi.com/2/3/12982174/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
华师大版九年级下册第27章 圆综合与测试单元测试同步达标检测题
展开华师大版九年级下册第27章圆单元考试题
姓名: ,成绩: ;
一.选择题(共12小题,共48分)
1.(安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为( )
A.2 B.4 C.4 D.8
2.(泰安)如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于( )
A.4 B.6 C.2 D.8
第1题 第2题 第3题
3.(玉林)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是( )
A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD
4.(台湾)如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D点.若AB=16,BC=12,则△OBD的面积为何?( )
A.6 B.12 C.15 D.30
第4题 第5题
5.是8cm,水的最大深度是2cm,则杯底有水部分的面积是( ) 第6题
A.(π﹣4)cm2 B.(π﹣8)cm2 C.(π﹣4)cm2 D.(π﹣2)cm2
6.(兰州)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( )
A.80° B.90° C.100° D.无法确定
7.(常德)如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为( )
A.50° B.80° C.100° D.130°
第7题 第8题 第9题
8.(荆州)如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是( )A.55° B.60° C.65° D.70°
9.(巴中)如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )
A.25° B.50° C.60° D.30°
10.(湘西州)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为( )
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
11.(贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是( )
A.0 B. C.2 D.3
12.(2015贺州)如图,BC是⊙O的直径,AD是⊙O的切线,切点为D,AD与CB的延长线交于点A,∠C=30°,给出下面四个结论:
①AD=DC;②AB=BD;③AB=BC;④BD=CD,
其中正确的个数为( )
A.4个 B.3个 C.2个 D.1个
二.填空题(共6小题,共24分)
13.(2015甘南州)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 .
第13题 第14题 第15题
14.(2015盐城)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是 .
15.(2015天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是 .
16.(2015安顺)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 (结果保留π).
第16题 第17题 第18题
17.(2015重庆)如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是 .(结果保留π)
18.(2014烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于 .
三.解答题(共8小题,共78分;前两个题每题9分,后面每题10分)
19.求证:BE=CE;
(2)试判断四边形BFCD的形状,并说明理由;
(3)若BC=8,AD=10,求CD的长.
20.如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
21.当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.
22.(2015丹东)如图,AB是⊙O的直径, =,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.
(1)若OA=CD=2,求阴影部分的面积;
(2)求证:DE=DM.
23.求线段EC的长;
(2)求图中阴影部分的面积.
24.(2015镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.
(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);
(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于 .
25.求证:∠ADC=∠ABD;
(2)求证:AD2=AMAB;
(3)若AM=,sin∠ABD=,求线段BN的长.
26.(2015黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.
华师大版九年级下册第27章圆单元考试题
参考答案与试题解析
一.选择题(共12小题)
1.
A.2 B.4 C.4 D.8
【解答】解:∵∠A=22.5°,
∴∠BOC=2∠A=45°,
∵⊙O的直径AB垂直于弦CD,
∴CE=DE,△OCE为等腰直角三角形,
∴CE=OC=2,
∴CD=2CE=4.
故选:C.
2.
A.4 B.6 C.2 D.8
【解答】解:连接OA,OC,过点O作OD⊥AC于点D,
∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,
∴∠COD=∠B=60°;
在Rt△COD中,OC=4,∠COD=60°,
∴CD=OC=2,
∴AC=2CD=4.
故选A.
3.
A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD
【解答】解:A、根据垂径定理不能推出AC=AB,故A选项错误;
B、∵直径CD⊥弦AB,
∴=,
∵对的圆周角是∠C,对的圆心角是∠BOD,
∴∠BOD=2∠C,故B选项正确;
C、不能推出∠C=∠B,故C选项错误;
D、不能推出∠A=∠BOD,故D选项错误;
故选:B
4.
A.6 B.12 C.15 D.30
【解答】解:∵OD⊥BC,
∴BD=CD=BC=×12=6,
在Rt△BOD中,∵OB=AB=8,BD=6,
∴OD==2,
∴S△OBD=ODBD=×2×6=6.
故选A.
5.是8cm,水的最大深度是2cm,则杯底有水部分的面积是( )
A.(π﹣4)cm2 B.(π﹣8)cm2 C.(π﹣4)cm2 D.(π﹣2)cm2
【解答】解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,
∵OA=OD=4,CD=2,
∴OC=2,
在RT△AOC中,sin∠OAC==,
∴∠OAC=30°,
∴∠AOB=120°,
AC==2,
∴AB=4,
∴杯底有水部分的面积=S扇形﹣S△AOB=﹣××2=(π﹣4)cm2
故选A.
6.
A.80° B.90° C.100° D.无法确定
【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,
∴∠AOB=∠ACB,
∵∠AOB=90°,
∴∠ACB=90°.
故选B.
7.
A.50° B.80° C.100° D.130°
【解答】解:∵∠BOD=100°,
∴∠BAD=100°÷2=50°,
∴∠BCD=180°﹣∠BAD
=180°﹣50°
=130°
故选:D.
8.
A.55° B.60° C.65° D.70°
【解答】解:连接OB,
∵∠ACB=25°,
∴∠AOB=2×25°=50°,
由OA=OB,
∴∠BAO=∠ABO,
∴∠BAO=(180°﹣50°)=65°.
故选C.
9.
A.25° B.50° C.60° D.30°
【解答】解:∵∠BOC=2∠BAC,∠BOC=50°,
∴∠BAC=25°,
∵AC∥OB,
∴∠BAC=∠B=25°,
∵OA=OB,
∴∠OAB=∠B=25°,
故选:A.
10.
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
【解答】解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选B.
11.
A.0 B.1 C.2 D.3
【解答】解:设OP与⊙O交于点N,连结MN,OQ,如图,
∵OP=4,ON=2,
∴N是OP的中点,
∵M为PQ的中点,
∴MN为△POQ的中位线,
∴MN=OQ=×2=1,
∴点M在以N为圆心,1为半径的圆上,
当点M在ON上时,OM最小,最小值为1,
∴线段OM的最小值为1.
故选B.
12.(2015贺州)如图,BC是⊙O的直径,AD是⊙O的切线,切点为D,AD与CB的延长线交于点A,∠C=30°,给出下面四个结论:
①AD=DC;②AB=BD;③AB=BC;④BD=CD,
其中正确的个数为( )
A.4个 B.3个 C.2个 D.1个
【解答】解:连接DO,
∵BC是⊙O的直径,AD是⊙O的切线,切点为D,
∴∠BDC=∠ADO=90°,
∵DO=CO,
∴∠C=∠CDO=30°,
∴∠A=30°,∠DBC=60°,
∠ADB=30°,
∴AD=DC,故①正确;
∵∠A=30°,∠DBC=60°,
∴∠ADB=30°,
∴AB=BD,故②正确;
∵∠C=30°,∠BDC=90°,
∴BD=BC,
∵AB=BD,
∴AB=BC,故③正确;
无法得到BD=CD,故④错误.
故选:B.
二.填空题(共6小题)
13.(2015甘南州)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 6 .
【解答】解:连接AO,
∵半径是5,CD=1,
∴OD=5﹣1=4,
根据勾股定理,
AD===3,
∴AB=3×2=6,
因此弦AB的长是6.
14.(2015盐城)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是 3<r<5 .
【解答】解:在直角△ABD中,CD=AB=4,AD=3,
则BD==5.
由图可知3<r<5.
故答案为:3<r<5.
15.(2015天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是 4π .
【解答】解:弧CD的长是=,
弧DE的长是: =,
弧EF的长是: =2π,
则曲线CDEF的长是: ++2π=4π.
故答案为:4π.
16.(2015安顺)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 3﹣π (结果保留π).
【解答】解:过D点作DF⊥AB于点F.
∵AD=2,AB=4,∠A=30°,
∴DF=ADsin30°=1,EB=AB﹣AE=2,
∴阴影部分的面积:
4×1﹣﹣2×1÷2
=4﹣π﹣1
=3﹣π.
故答案为:3﹣π.
17.(2015重庆)如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是 8﹣2π .(结果保留π)
【解答】解:∵△ACB是等腰直角三角形,∠ACB=90°,
∴∠A=∠B=45°,
∵AB=4,
∴AC=BC=AB×sin45°=4,
∴S△ACB===8,S扇形ACD==2π,
∴图中阴影部分的面积是8﹣2π,
故答案为:8﹣2π.
18.(2014烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于 π .
【解答】解:连接OC、OD、OE,OC交BD于M,OE交DF于N,过O作OZ⊥CD于Z,
∵六边形ABCDEF是正六边形,
∴BC=CD=DE=EF,∠BOC=∠COD=∠DOE=∠EOF=60°,
由垂径定理得:OC⊥BD,OE⊥DF,BM=DM,FN=DN,
∵在Rt△BMO中,OB=4,∠BOM=60°,
∴BM=OB×sin60°=2,OM=OBcos60°=2,
∴BD=2BM=4,
∴△BDO的面积是×BD×OM=×4×2=4,
同理△FDO的面积是4;
∵∠COD=60°,OC=OD=4,
∴△COD是等边三角形,
∴∠OCD=∠ODC=60°,
在Rt△CZO中,OC=4,OZ=OC×sin60°=2,
∴S扇形OCD﹣S△COD=﹣×4×2=π﹣4,
∴阴影部分的面积是:4+4+π﹣4+π﹣4=π,
故答案为:π.
三.解答题(共8小题)
19.求证:BE=CE;
(2)试判断四边形BFCD的形状,并说明理由;
(3)若BC=8,AD=10,求CD的长.
【解答】(1)证明:∵AD是直径,
∴∠ABD=∠ACD=90°,
在Rt△ABD和Rt△ACD中,
,
∴Rt△ABD≌Rt△ACD,
∴∠BAD=∠CAD,
∵AB=AC,
∴BE=CE;
(2)四边形BFCD是菱形.
证明:∵AD是直径,AB=AC,
∴AD⊥BC,BE=CE,
∵CF∥BD,
∴∠FCE=∠DBE,
在△BED和△CEF中
,
∴△BED≌△CEF,
∴CF=BD,
∴四边形BFCD是平行四边形,
∵∠BAD=∠CAD,
∴BD=CD,
∴四边形BFCD是菱形;
(3)解:∵AD是直径,AD⊥BC,BE=CE,
∴CE2=DEAE,
设DE=x,
∵BC=8,AD=10,
∴42=x(10﹣x),
解得:x=2或x=8(舍去)
在Rt△CED中,
CD===2.
20.如图1,当PQ∥AB时,求PQ的长度;
(2)如图2,当点P在BC上移动时,求PQ长的最大值.
【解答】解:(1)连结OQ,如图1,
∵PQ∥AB,OP⊥PQ,
∴OP⊥AB,
在Rt△OBP中,∵tan∠B=,
∴OP=3tan30°=,
在Rt△OPQ中,∵OP=,OQ=3,
∴PQ==;
(2)连结OQ,如图2,
在Rt△OPQ中,PQ==,
当OP的长最小时,PQ的长最大,
此时OP⊥BC,则OP=OB=,
∴PQ长的最大值为=.
21.当AC=2时,求⊙O的半径;
(2)设AC=x,⊙O的半径为y,求y与x的函数关系式.
【解答】解:(1)连接OE,OD,
在△ABC中,∠C=90°,AC+BC=8,
∵AC=2,
∴BC=6;
∵以O为圆心的⊙O分别与AC,BC相切于点D,E,
∴四边形OECD是正方形,
tan∠B=tan∠AOD===,解得OD=,
∴圆的半径为;
(2)∵AC=x,BC=8﹣x,
在直角三角形ABC中,tanB==,
∵以O为圆心的⊙O分别与AC,BC相切于点D,E,
∴四边形OECD是正方形.
tan∠AOD=tanB===,
解得y=﹣x2+x.
22.(2015丹东)如图,AB是⊙O的直径, =,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.
(1)若OA=CD=2,求阴影部分的面积;
(2)求证:DE=DM.
【解答】(1)解:如图,连接OD,
∵CD是⊙O切线,
∴OD⊥CD,
∵OA=CD=2,OA=OD,
∴OD=CD=2,
∴△OCD为等腰直角三角形,
∴∠DOC=∠C=45°,
∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;
(2)证明:如图,连接AD,
∵AB是⊙O直径,
∴∠ADB=∠ADM=90°,
又∵=,
∴ED=BD,∠MAD=∠BAD,
在△AMD和△ABD中,
,
∴△AMD≌△ABD,
∴DM=BD,
∴DE=DM.
23.求线段EC的长;
(2)求图中阴影部分的面积.
【解答】解:(1)∵在矩形ABCD中,AB=2DA,DA=2,
∴AB=AE=4,
∴DE==2,
∴EC=CD﹣DE=4﹣2;
(2)∵sin∠DEA==,
∴∠DEA=30°,
∴∠EAB=30°,
∴图中阴影部分的面积为:
S扇形FAB﹣S△DAE﹣S扇形EAB
=﹣×2×2﹣
=﹣2.
24.(2015镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.
(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);
(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于 .
【解答】(1)如图所示,八边形ABCDEFGH即为所求,
(2)∵八边形ABCDEFGH是正八边形,
∴∠AOD=3=135°,
∵OA=5,
∴的长=,
设这个圆锥底面圆的半径为R,
∴2πR=,
∴R=,即这个圆锥底面圆的半径为.
故答案为:.
25.求证:∠ADC=∠ABD;
(2)求证:AD2=AMAB;
(3)若AM=,sin∠ABD=,求线段BN的长.
【解答】(1)证明:连接OD,
∵直线CD切⊙O于点D,
∴∠CDO=90°,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠1+∠2=∠2+∠3=90°,
∴∠1=∠3,
∵OB=OD,
∴∠3=∠4,
∴∠ADC=∠ABD;
(2)证明:∵AM⊥CD,
∴∠AMD=∠ADB=90°,
∵∠1=∠4,
∴△ADM∽△ABD,
∴,
∴AD2=AMAB;
(3)解:∵sin∠ABD=,
∴sin∠1=,
∵AM=,
∴AD=6,
∴AB=10,
∴BD==8,
∵BN⊥CD,
∴∠BND=90°,
∴∠DBN+∠BDN=∠1+∠BDN=90°,
∴∠DBN=∠1,
∴sin∠NBD=,
∴DN=,
∴BN==.
26.(2015黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.
【解答】解:(1)∵AB与圆O相切,
∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD==,
∴OD=3;
(2)连接OE,
∵AE=OD=3,AE∥OD,
∴四边形AEOD为平行四边形,
∴AD∥EO,
∵DA⊥AE,
∴OE⊥AC,
又∵OE为圆的半径,
∴AE为圆O的切线;
(3)∵OD∥AC,
∴=,即=,
∴AC=7.5
华师大版九年级下册第27章 圆综合与测试单元测试复习练习题: 这是一份华师大版九年级下册第27章 圆综合与测试单元测试复习练习题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学九年级下册第27章 圆综合与测试单元测试随堂练习题: 这是一份数学九年级下册第27章 圆综合与测试单元测试随堂练习题,共31页。
初中数学第27章 圆综合与测试单元测试习题: 这是一份初中数学第27章 圆综合与测试单元测试习题,共8页。试卷主要包含了选择题等内容,欢迎下载使用。