搜索
    上传资料 赚现金
    英语朗读宝

    沪科版数学七年级下册 10.1相交线 教案

    沪科版数学七年级下册 10.1相交线 教案第1页
    沪科版数学七年级下册 10.1相交线 教案第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册10.1 相交线教案

    展开

    这是一份数学七年级下册10.1 相交线教案,共4页。教案主要包含了教学目标,教学重难点,教学过程,课堂总结,促进构建,布置作业,巩固提高等内容,欢迎下载使用。
    10.1相交线》教学设计 、教学目标1.了解邻补角的概念;理解对顶角的概念,能找出图形中的一个角的对顶角;掌握对顶角的性质,会利用对顶角的性质来计算和说理;  2.通过类比邻补角的学习过程,学习对顶角,让学生感受知识之间的内在联系。并在探究过程中体会图形语言、文字语言、符号语言三种语言的相互转换;3.通过对对顶角性质的探究,向学生渗透试验、观察、猜想、操作验证、说理是得到几何结论的普遍过程和方法. 二、教学重难点     教学重点理解对顶角的概念;掌握对顶角的性质.    教学难点邻补角位置关系的探究类比邻补角的学习经验,得到对顶角的概念和性质、教学过程(一)创设情境 引入新课   展示海宫学校教学楼照片,问;里面你能抽象出哪些几何图形?    我们周围见到的许多图形中,纵横交错的直线条都给我们相交直线与平行直线的形象我们今天学习《第10  相交线、平行线与平移》,首先学习第一节相交线【板书课题:101相交线】【设计意图】通过展示图片,将其看作为平面图形,图中出现平行线相交线,自然引出本章和本节课的学习内容.同时,让学生了解到数学来源于生活,几何图形是由生活中的实物抽象出来的)结合旧知 探究新知【活动1请同学们先来画两条相交直线,如图,如何描述该图形?(板书:直线ABCD交于O点).2图中小于平角的角有几个?(4个角,分别可记为1234,它们的顶点都是O点,边略)3你能说明12的顶点和边吗?4下面我们先来研究这两个角的关系?(引导学生从数量和位置关系上来研究)【要求:先独立思考,再同桌交流】教师说明:像图中的射线OCOD叫做互为反向延长线.5、共同归纳:有公共顶点;有一条公共边,另一条边互为反向延长线.【板书】两直线相交时,满足上述两个特征的角叫做邻补角.【邻:相邻,一墙之隔为邻;补:互补】图中邻补角有4对:12∠233414【设计意图】先明确相交线所形成的角的构成,再找出相交线中的互补的角,接着自主探究此处互补的角由两角的顶点和边的位置特征有关,从而了解到什么是邻补角,并认识到邻补角的位置关系决定数量关系.如此设计让学生充分利用已有的知识基础,利用知识之间的联系,来有效学习邻补角,并为后面通过对比来学习对顶角作铺垫. ()运用对比 自主探究【活动三】1、刚才已经研究过的邻补角,还有一类角,1 32 4.它们有怎样的位置关系和数量关系?由前面研究邻补角的经验,我们先来研究他们的位置关系,(以1 3为例)请类比邻补角的位置关系,说一说1 3的位置关系,即13的顶点和边有怎样的关系?2  共同归纳:有公共顶点;且角的两边分别互为反向延长线.【板书】两直线相交时,满足上述两个特征的角叫做对顶角.说明:∠2∠4也是对顶角;两条直线相交,有2对对顶角,4对邻补角.3  巩固练习下列各图中的12是对顶角吗?为什么?          如图示,直线ABCD交于O点,填空:AOC的对顶角是      COB的对顶角是        游戏竞答:过O点再任意画一条直线EF,请一位同学说出图中的一个角,另一个同学说出它的对顶角.                                                                                                  4、现在来研究对顶角的数量关系,引导探究:观察13,你能猜想对顶角度数自始至终怎样数量关系请选择适当方法,说明猜想的正确性.【要求:先独立思考,在同桌交流】(学生选择测量、对折、取特殊值和说理等方法,都给与肯定,因为它们都是获得几何结论的重要方法.但是也要让学生知道测量、对折等只能是一种体验过程,取特殊值法不具备一般性,真正要说明一个几何结论的正确性,往往要通过说理才行.同时通过活动渗透获得正确的数学结论通常经历的过程:观察、猜想、操作体验和说理.)你能证明另外一对对顶角24相等吗?如果改变1的大小,1=32=4还成立吗?得到对顶角性质:对顶角相等【板书】;结合图形给出该性质的符号语言:因为1 3是对顶角,所以1 =3【设计意图】邻补角的学习经验,学生先自主探究得到对顶角的位置特征,再探究对顶角的数量关系,让学生进一步感受数学知识之间有联系,数学学习有方法,从而增长数学学习的信心;通过练习,让学生进一步巩固对对顶角的理解.两项练习均以游戏竞答形式出现,激发学生的竞争意识,活跃课堂氛围;通过探究对顶角性质,向学生渗透试验、观察、猜想、操作验证、说理是得到几何结论的普遍过程和方法.)课堂练习,巩固新知1.判断下列说法是否正确如果两个角是邻补角,那么这两个角一定互补.                                                             相等的角是对顶角.                    2.如图所示,直线ABCD交于O点,  如果AOC=40°,求COBBODAOD的度数.2如果AOC,你可得到哪些角的度数?它们分别是多少?(用含α的代数式来表示)3如果AOC=90°,则BOD=      度,COB=      度,AOD=      度.【变式】请添加一个合适的条件,使得AOC=90°【变式】如果AOC:BOC=1:2,求AOC的度数.3如图,要测量两堵围墙所形成的AOB的度数,但人不能进入围墙,如何测量?【设计意图】通过练习,进一步巩固本节课的重点,同时也是强化基本知识的掌握和基本技能的训练,为以后涉及相关知识的推理和计算奠定基础.其中第2题中的第(1)小题的变题练习,从特殊到一般,让学生理性认识相交线所形成的四个角之间的数量关系;第(2)小题和后面第一个变题练习,再从一般到特殊,旨在渗透两直线互相垂直的情形,为下一节学习垂线作铺垫,并再一次让学生体会到所学数学知识之间存在联系性;第(2)小题和后面第二个变题练习,进一步综合利用相交线所形成的四个角之间的数量关系解决问题,主要体现在结合特定条件,求相关角的度数,渗透用方程解几何问题的方法.第(3)小题的设计主要是回归生活 四、课堂总结,促进构建1、请把你的收获与同学分享······       请将你的疑惑告诉老师······ 2  回忆本节课的学习过程: 五、布置作业,巩固提高1.课本第121页,习题10.1,第1,2

    相关教案

    沪科版10.1 相交线教案:

    这是一份沪科版10.1 相交线教案,共4页。教案主要包含了学情分析等内容,欢迎下载使用。

    数学沪科版10.1 相交线教案设计:

    这是一份数学沪科版10.1 相交线教案设计,共4页。教案主要包含了学情分析等内容,欢迎下载使用。

    沪科版七年级下册10.1 相交线教学设计:

    这是一份沪科版七年级下册10.1 相交线教学设计,共4页。教案主要包含了学情分析等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map