所属成套资源:2022年中考数学三轮冲刺《函数实际问题》冲刺练习(含答案)
2022年中考数学三轮冲刺《函数实际问题》冲刺练习一(含答案)
展开
这是一份2022年中考数学三轮冲刺《函数实际问题》冲刺练习一(含答案),共6页。
如图,正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在x轴的正半轴上,且A点的坐标是(1,0).
(1)直线经过点C,且与x轴交与点E,求四边形AECD的面积;
(2)若直线l经过点E且将正方形ABCD分成面积相等的两部分,求直线l的解析式;
(3)若直线l1经过点F(-1.5,0)且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位后,交x轴于点M,交直线l1于点N,求△FMN的面积。
现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.
(1)设A地到甲地运送蔬菜x吨,请完成下表:
(2)设总运费为W元,请写出W与x的函数关系式.
(3)怎样调运蔬菜才能使运费最少?
甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价30元,乒乓球每盒定价5元。现两家商店搞促销活动,甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠。某班级需购球拍4付,乒乓球若干盒(不少于4盒)。
(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式;
(2)就乒乓球盒数讨论去哪家商店买合算?
某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg(每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元.设每天安排名工人进行蔬菜精加工.
(1)求每天蔬菜精加工后再出售所得利润y(元)与x(人)的函数关系式;
(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为W元,求2与x的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?
如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.
(1)当t=2时,则AP= ,此时点P的坐标是 。
(2)当t=3时,求过点P的直线l:y=-x+b的解析式?
(3)当直线l:y=-x+b从经过点M到点N时,求此时点P向上移动多少秒?
(4)点Q在x轴时,若S△ONQ=8时,请直按写出点Q的坐标是 。
某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工人来完成新式电动汽车的安装,工厂决定招聘一项新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部分发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额应尽可能的少?
某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨.现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.
(1)将这些货物一次性运到目的地,有几种租用货车的方案?
(2)若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?
如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
(1)求m、n的值;(2)求直线AC的解析式.
\s 0 答案解析
(1)10; (2)y=2x-4;(3).
解:
(1),
(2)
解:(1),.
(2),
由题意知:解得
随的增大而增大
当时,有最大值,(元)
安排60人进行精加工,40人采摘蔬菜,一天所获利润最大,最大利润5760元
(1) 2, (0,3)
(2)直线交y轴于点P(0,b),
由题意,得b>0,t≥0,b=1+t 当t=3时,b=4∴
(3)当直线过M(3,2)时 解得b=5 5=1+t1 ∴t1=4
当直线过N(4,4)时 解得 b=8 8=1+ t2 ∴t2=7
∴t2-t1=7-4=3秒.答略
(4)(4,0)或(-4,0)
解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.
根据题意,得,解得:.
答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.
(2)设工厂有a名熟练工.根据题意,得12(4a+2n)=240,
2a+n=10,n=10﹣2a,又a,n都是正整数,0<n<10,所以n=8,6,4,2.
即工厂有4种新工人的招聘方案.
①n=8,a=1,即新工人8人,熟练工1人;
②n=6,a=2,即新工人6人,熟练工2人;
③n=4,a=3,即新工人4人,熟练工3人;
④n=2,a=4,即新工人2人,熟练工4人.
(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.根据题意,得W=2000a+1200n=2000a+1200(10﹣2a)=12000﹣400a.
要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.
显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.
解:(1)设租用甲种货车x辆,则乙种货车为8﹣x辆,
依题意得:解不等式组得3≤x≤5
这样的方案有三种,甲种货车分别租3,4,5辆,乙种货车分别租5,4,3辆.
(2)总运费s=1300x+1000(8﹣x)=300x+8000
因为s随着x增大而增大所以当x=3时,总运费s最少为8900元.
运往甲地(单位:吨)
运往乙地(单位:吨)
A
x
B
相关试卷
这是一份中考数学三轮冲刺《函数实际问题》解答题冲刺练习13(含答案),共8页。试卷主要包含了5=2,5,360),等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《函数实际问题》解答题冲刺练习10(含答案),共7页。试卷主要包含了8 m,6m,宽2,01m3),2,等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《函数实际问题》解答题冲刺练习09(含答案),共8页。试卷主要包含了5吨,5=10000,等内容,欢迎下载使用。