所属成套资源:2022年中考数学二轮专题练习(含答案)
2022年中考数学二轮专题《特殊四边形探究》(含答案)
展开
这是一份2022年中考数学二轮专题《特殊四边形探究》(含答案),共11页。试卷主要包含了选择题,填空题,解答题,综合题等内容,欢迎下载使用。
2022年中考数学二轮专题《特殊四边形探究》一 、选择题1.如图,四边形ABCD中,AD∥BC,∠B=60°,AB=AD=BO=4,OC=8,点P从B点出发,沿四边形ABCD的边BA→AD→DC以每分钟一个单位长度的速度匀速运动,若运动的时间为t,△POD的面积为S,则S与t的函数图象大致为( )2.如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为( )A. B. C. D.3.如图,点E是矩形ABCD边AD上的一个动点,且与点A、点D不重合,连结BE、CE,过点B作BF∥CE,过点C作CF∥BE,交点为F点,连接AF、DF分别交BC于点G、H,则下列结论错误的是( )A.GH=BCB.S△BGF+S△CHF=S△BCFC.S四边形BFCE=AB•ADD.当点E为AD中点时,四边形BECF为菱形4.如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是( )①当x=0(即E、A两点重合)时,P点有6个②当0<x<4﹣2时,P点最多有9个③当P点有8个时,x=2﹣2④当△PEF是等边三角形时,P点有4个A.①③ B.①④ C.②④ D.②③二 、填空题5.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G,H在对角线AC上.若四边形EGFH是菱形,则AE的长为 .6.已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为 .7.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②=;③S△PDQ=;④cos∠ADQ=.其中正确结论是 .(填写序号)8.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ.下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是 .9.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(﹣10,0),对角线AC和OB相交于点D且AC•OB=160.若反比例函数y=(x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE:S△OAB=_________.三 、解答题10.点A,C为半径是3的圆周上两点,点B为的中点,以线段BA,BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,求该菱形的边长.11.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数和反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.12.如图,四边形ABCD是以坐标原点O为对称中心的矩形,A(1,3),B(﹣3,﹣1),该矩形的边与坐标轴分别交于点E、F、G、H,连接EC.(1)直接写出点C的坐标;(2)判断点(1,﹣1.2)在矩形ABCD的内部还是外部;(3)求四边形ECHO的面积;(4)如果反比例函数的图象过点A,那么它是否一定过点D?请说明理由.13.如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E.F,点P是边DC上的一个动点,且保持DP=AE,连接PE.PF,设AE=x(0<x<3).(1)填空:PC=_____,FC=_________;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.四 、综合题14.如图,抛物线y=x2-2x-3与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(2)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.15.如图,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.16.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.
0.答案解析1.答案为:D.2.C3.答案为:B.解析:连接EF交BC于O.∵BF∥CE,CF∥BE,∴四边形BECF是平行四边形,∴EO=OF,∵GH∥AD,∴AG=GF,HD=FH,∴GH=AD,故选项A正确,∵BG+CH=GH,∴S△BGF+S△CHF=S△BCF故选项B错误,∵S四边形BFCE=2S△EBC=2××BC×AB=BC×ABAB•AD,故选项C正确,∵当点E为AD中点时,易证EB=EC,所以四边形BECF为菱形,4.答案为:B.解:①如图1,当x=0(即E、A两点重合)时,P点有6个;故①正确;②当0<x<4﹣2时,P点最多有8个.故②错误.③当P点有8个时,如图2所示:当0<x<﹣1或﹣1<x<4﹣4或2<x<4﹣﹣1或4﹣﹣1<x<4﹣2时,P点有8个;故③错误;④如图3,当△PMN是等边三角形时,P点有4个;故④正确;当△PEF是等腰三角形时,关于P点个数的说法中,不正确的是②③,一定正确的是①④;故选:B. 二 、填空题5.答案为:5.6.答案为:(-2-a,-b)或(2-a,-b).解析:如图1,∵四边形ABCD是平行四边形,∴CD=AB=2,∵A的坐标为(a,b),AB与x轴平行,∴B(2+a,b),∵点D与点B关于原点对称,∴D(-2-a,-b),如图2,∵B(a-2,b),∵点D与点B关于原点对称,∴D(2-a,-b),综上所述:D(-2-a,-b)或(2-a,-b). 7.答案为:①②④.解析:①正确.理由:连结OQ,OD,∵DP=CD=BO=AB,且DP∥OB,∴四边形OBPD是平行四边形.∴∠AOD=∠OBQ,∠DOQ=∠OQB,∵OB=OQ,∴∠OBQ=∠OQB,∴∠AOD=∠DOQ,∴△AOD≌△QOD,∴∠OQD=∠DAO=90°,DQ=AD=1.所以①正确.②正确.理由:延长DQ交BC于点E,过点Q作QF⊥CD,垂足为F,根据切线长定理,得QE=BE,设QE=x,则BE=x,DE=1+x,CE=1-x,在Rt△CDE中,(1+x)2=(1-x)2+1,解得x=,CE=,∵△DQF∽△DEC,∴==,得FQ=,∵△PQF∽△PBC,∴==,∴=,所以②正确;③错误,理由:S△PDQ=DP·QF=××=,所以③错误;④正确,理由:∵AD∥BC,∴∠ADQ=∠DEC,∴cos∠ADQ=cos∠DEC===,所以④正确.故答案为①②④.8.答案为:①②③④.9.答案为:1:5.三 、解答题10.解:过B作直径,连结AC交AO于E,∵点B为的中点,∴BD⊥AC,①如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB-BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连结OC,∵CE==,∴CD==;②如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连结OC,∵CE==2,∴CD==211.解:(1)∵AC=BC,CO⊥AB,A(-4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),解得∴一次函数解析式为y=x+1,将P(4,2)代入反比例函数解析式得m=8,即反比例解析式为y=(2)假设存在这样的D点,使四边形BCPD为菱形.如图,连结CD与PB交于E,∵四边形BCPD为菱形,PB⊥x轴,∴CE=DE=4,CD⊥PB,∴CD=8,CD∥x轴,又由一次函数解析式y=x+1得C(0,1),∴D点坐标(8,1),将D点坐标代入反比例函数解析式得,左边=右边,∴反比例函数上存在D(8,1),使四边形BCPD为菱形.12.解:(1)∵A、C关于原点对称,A(1,3),∴C(﹣1,﹣3).(2)∵B、D关于原点对称,B(﹣3,﹣1),∴D(3,1),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣2,∵x=1时,y=﹣1,﹣12<﹣1,∴点(1,﹣1.2)在直线CD的下方,∴点(1,﹣1.2)在矩形ABCD的外部.(3)∵直线CD的解析式为y=x﹣2,∴H(0,﹣2),F(2,0),∵E、F关于原点对称,∴E(﹣2,0),连接OC,∴S四边形ECHO=S△EOC+S△OHC=×2×3+×2×1=4.(4)一定过点D.理由:∵过点A(1,3)的反比例函数的解析式为y=,∵x=3时,y=1,∴D(3,1)也在反比例函数的图象上.13.解:(1)∵四边形ABCD是矩形[w~ww.zz#st^ep%.@com]∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+[来源:^*中&%教网@]∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.四 、综合题14.解:(1)连结AC,作BF⊥AC交AC的延长线于F,∵A(2,-3),C(0,-3),∴AF∥x轴,∴F(-1,-3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D的坐标为(0,1)或(0,-1)(2)设M(a,a2-2a-3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴于E,AF⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a-1|=3,∴a=4或a=-2,∴M(4,5)或(-2,5);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,-3),所以存在以点A,B,M,N为顶点的四边形是平行四边形,M的坐标为(4,5)或(-2,5)或(0,-3)15.解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB 的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).16.解:(1)设抛物线解析式为y=a(x-2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=-1,∴y=-(x-2)2+9=-x2+4x+5;(2)当y=0时,-x2+4x+5=0,∴x1=-1,x2=5,∴E(-1,0),B(5,0).设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=-1,n=5,∴直线AB的解析式为y=-x+5.设P(x,-x2+4x+5),∴D(x,-x+5),∴PD=-x2+4x+5+x-5=-x2+5x.∵AC∥x轴,∴点A,C关于对称轴对称,AC=4.∵AC⊥PD,∴S四边形APCD=×AC×PD=2(-x2+5x)=-2x2+10x,∴当x=-=时,即点P的坐标为(,错误!未找到引用源。)时,S四边形APCD最大=;(3)如图,过M作MH垂直于对称轴,垂足为H.∵MN∥AE,MN=AE,∴△HMN≌△OEA,∴HM=OE=1,∴M点的横坐标为3或1.当横坐标1时,M点纵坐标为8,当横坐标为3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8).∵A(0,5),E(-1,0),∴直线AE的解析式为y=5x+5.∵MN∥AE,∴MN的解析式为y=5x+b.∵点N在抛物线对称轴x=2上,∴N(2,10+b).∵AE2=OA2+OE2=26=MN2,∴MN2=(2-1)2+[8-(10+b)]2=1+(b+2)2.∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称.∵点N在抛物线对称轴上,∴M1N=M2N.∴1+(b+2)2=26,∴b=3或b=-7,∴10+b=13或10+b=3.∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).
相关试卷
这是一份中考训练难点探究专题(选做):特殊四边形中的综合性问题专项训练与解析,共4页。试卷主要包含了动点问题,图形的变换问题等内容,欢迎下载使用。
这是一份备战2023数学新中考二轮复习重难突破(江苏专用)专题16 特殊四边形,文件包含备战2023数学新中考二轮复习重难突破江苏专用专题16特殊四边形解析版docx、备战2023数学新中考二轮复习重难突破江苏专用专题16特殊四边形原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份中考数学二轮复习专题《特殊四边形探究》练习(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。