|试卷下载
搜索
    上传资料 赚现金
    2022届陕西省榆林市高三下学期二模数学(理)试题含解析
    立即下载
    加入资料篮
    2022届陕西省榆林市高三下学期二模数学(理)试题含解析01
    2022届陕西省榆林市高三下学期二模数学(理)试题含解析02
    2022届陕西省榆林市高三下学期二模数学(理)试题含解析03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届陕西省榆林市高三下学期二模数学(理)试题含解析

    展开
    这是一份2022届陕西省榆林市高三下学期二模数学(理)试题含解析,共16页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。

    2022届陕西省榆林市高三下学期二模数学(理)试题

    一、单选题

    1的实部为(       

    A B0 C1 D2

    【答案】D

    【分析】根据复数乘法的运算法则,结合复数实部的定义进行求解即可.

    【详解】因为

    所以的实部为2

    故选:D

    2       

    A B C D

    【答案】A

    【分析】利用诱导公式及二倍角正弦公式计算可得;

    【详解】解:.

    故选:A

    3.定义集合.己知集合,则中元素的个数为(       

    A3 B4 C5 D6

    【答案】B

    【分析】首先要理解A-B的含义,然后按照集合交并补的运算规则即可.

    【详解】因为,所以

    又因为,所以.

    故选:B.

    4.曲线在点处的切线方程为(       

    A B C D

    【答案】B

    【分析】求出切点坐标和斜率,即可求出切线方程.

    【详解】因为,所以曲线在点处的切线的斜率为,当x=1时,y=0,切点坐标为(10.故所求切线方程为.

    故选:B

    5.某公司为了确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:万元)对年销售量y(单位:千件)的影响.现收集了近5年的年宣传费x(单位:万元)和年销售量y(单位:千件)的数据,其数据如下表所示,且y关于x的线性回归方程为,则下列结论错误的是(       

    x

    4

    6

    8

    10

    12

    y

    1

    5

    7

    14

    18

     

    Axy之间呈正相关关系

    B

    C.该回归直线一定经过点

    D.当此公司该种产品的年宣传费为20万元时,预测该种产品的年销售量为34800

    【答案】C

    【分析】求出,直接判断C,把代入回归方程可得系数值,由的正负判断A,由代入回归方程得估计值,判断D.

    【详解】因为,所以该回归直线一定经过点,故,解得,即AB正确,C不正确.

    代入,得,故当此公司该种产品的年宣传费为20万元时,预测该种产品的年销售量为34800件,D正确.

    故选:C.

    6.在四棱锥中,底面是矩形,底面,且,则二面角的大小为(       

    A30° B45° C60° D75°

    【答案】A

    【分析】证明线面垂直,线线垂直,找到二面角的平面角,再进行求解.

    【详解】因为底面平面,所以,又,所以平面,因为平面,则,所以二面角的平面角为.中,,则.故二面角的大小为30°.

    故选:A

    7.执行如图所示的程序框图,若输出的,则输入的实数x的取值共有(       )

    A1 B2 C3 D4

    【答案】C

    【分析】由程序框图可知,解出x即可.

    【详解】由框图可知,该循环体需循环2次输出结果,输出

    ,解得,故输入的实数x的取值共有3.

    故选:C.

    8.已知函数,现有下列四个命题:

    成等差数列;

    成等差数列;

    成等比数列;

    成等比数列.

    其中所有真命题的序号是(       

    A①② B②③ C①②③ D①②④

    【答案】D

    【分析】根据等差数列、等比数列的性质,结合对数的运算性质逐一判断即可.

    【详解】因为,所以为真命题.

    因为,所以为真命题.

    因为,所以成等差数列,又,所以是假命题.

    因为,所以为真命题.

    故选:D

    9.已知,则(       )

    A2 B4 C D

    【答案】B

    【分析】求得,再由即可求得答案.

    【详解】

    ,则.

    ,故.

    故选:B.

    10.函数的部分图象如图所示,现将的图象向右平移个单位长度,得到函数的图象,则在区间上的值域为(       

    A B C D

    【答案】C

    【分析】先由图像求出,根据平移得到,直接求值域即可.

    【详解】由图像可以看出:

    因为,所以.

    因为,所以.

    因为

    所以

    所以.

    因为,所以.

    因为,所以,所以

    .

    故选:C

    11.为有效阻断新冠肺炎疫情传播徐径,构筑好免疫屏障,从2022113日开始,某市启动新冠病毒疫苗加强针接种工作,凡符合接种第三针条件的市民,要求尽快接种.该市有3个疫苗接种定点医院,现有8名志愿者将被派往这3个医院协助新冠疫苗接种工作,每个医院至少2名至多4名志愿者,则不同的安排方法共有(       

    A2940 B3000 C3600 D5880

    【答案】A

    【分析】分组分配问题需要考虑重复;依题意要先分类,因为8个人分成3组人数上有不同的分法,再分配.

    【详解】根据题意,这8名志愿者人数分配方案共有两类:第一类是224,第二类是332

    故不同的安排方法共有 种;

    故选:A.

    12.已知AB是曲线上两个不同的点,,则的最大值与最小值的比值是(       

    A B C D

    【答案】A

    【分析】方程表示的曲线为圆的左半部分和圆的右半部分,数形结合求出的最大值和最小值,进而求出比值.

    【详解】,得.

    因为,所以.

    时,;当时,.

    所以方程表示的曲线为圆的左半部分和圆的右半部分.AB分别与图中的MN重合时,取得最大值,且最大值为6

    AB为图中EFGH四点中的某两点时,取得最小值,且最小值为.的最大值与最小值的比值是.

    故选:A

    二、填空题

    13.已知为奇函数,当时,,则___________.

    【答案】

    【分析】利用奇函数的性质,结合函数的解析式进行求解即可.

    【详解】因为为奇函数,所以

    故答案为:

    14的内角ABC所对的边分别为abc.已知,则___________.

    【答案】0.4

    【分析】根据正弦定理得a2c,再由余弦定理即可求.

    【详解】根据正弦定理知,,即

    ,解得.

    故答案为:.

    15.如图,某款酒杯容器部分为圆锥,且该圆锥的轴截面为面积是的正三角形.若在该酒杯内放置一个圆柱形冰块,要求冰块高度不超过酒杯口高度,则酒杯可放置圆柱冰块的最大体积为______.

    【答案】

    【分析】先求出圆锥底面圆半径,设冰块的底面圆半径为,用表达出冰块的体积,利用导函数求出冰块体积的最大值.

    【详解】设圆锥底面圆的半径为,圆柱形冰块的底面圆半径为,高为,由题意可得,,解得,设圆柱形冰块的体积为,则.,则.时,;当时,.所以处取得极大值,也是最大值,,故酒杯可放置圆柱形冰块的最大体积为.

    故答案为:

    三、双空题

    16.设P为椭圆和双曲线的一个公共点,且P在第一象限,FM的左焦点,则M的离心率为______________________.

    【答案】         

    【分析】根据椭圆方程直接求离心率即可,根据椭圆与双曲线的方程可得其共焦点,再根据椭圆和双曲线的定义即可得出答案.

    【详解】解:M的离心率

    M的右焦点为,因为,且MN的焦点都在x轴上,

    所以椭圆M与双曲线N的焦点相同,

    所以,解得.

    故答案为:.

    四、解答题

    17.一机械制造加工厂的某条生产线设备在正常运行的情况下,生产的零件尺寸z(单位:)服从正态分布,且.

    (1)的概率;

    (2)若从该条生产线上随机选取2个零件,设X表示零件尺寸小于的零件个数,求X的分布列与数学期望.

    【答案】(1)0.1

    (2)分布列见解析,数学期望为0.2

    【分析】1)由正态分布的对称性求解;(2X服从二项分布,求出相应的分布列及数学期望.

    (1)

    因为零件尺寸服从正态分布.

    所以

    因为,所以.

    (2)

    依题意可得

    所以.

    所以X的分布列为

    X

    0

    1

    2

    P

    0.81

    0.18

    0.01

     

    所以(或

    18.已知,数列满足.

    (1)的通项公式;

    (2),求数列的前n项和.

    【答案】(1)

    (2)

    【分析】1)依题意可得,再利用累加法求出的通项公式;

    2)由(1)可知,即可得到,利用裂项相消法求和即可;

    (1)

    解:因为,即

    所以

    以上各式相加得

    ,所以.

    时,

    的通项公式为.

    (2)

    解:由(1)知,

    .

    19.如图,在三棱柱中,点在底面内的射影恰好是点C,点D的中点,且.

    (1)证明:

    (2)己知,求直线与平面所成角的正弦值.

    【答案】(1)证明见解析

    (2)

    【分析】1)可证平面,从而可证.

    2)建立如图所示的空间直角坐标系,求出的方向向量与平面的法向量后可求线面角的余弦值.

    (1)

    证明:在底面内的射影是点C

    平面平面.

    中,

    平面.

    平面.

    (2)

    解:在平面内,过点B,则平面

    B为坐标原点建立如图所示的空间直角坐标系

    ,故.

    设平面的法向量为

    可取.

    直线与平面所成角的正弦值为.

    20.已知函数.

    (1)时,求的单调区间;

    (2)恒成立,求a的取值范围.

    【答案】(1)单调递减区间为,单调递增区间为

    (2)

    【分析】1)利用导数得出单调区间即可;

    2)将不等式变形为,构造函数,利用导数得出最值,进而得出a的取值范围.

    (1)

    的定义域为

    时,.

    时,,则的单调递减区间为

    时,,则的单调递增区间为.

    (2)

    恒成立,得恒成立.

    ,则.

    时,;当时,.

    所以,则,解得

    a的取值范围是.

    【点睛】关键点睛:解决问题二时,关键在于分离参数,构造函数,求出其最小值,得出a的取值范围.

    21.在直角坐标系中,抛物线与直线交于PQ两点,且.抛物线C的准线与x轴点交于点MG是以M为圆心,为半径的圆上的一点(非原点),过点G作抛物线C的两条切线,切点分别为AB.

    (1)求抛物线C的方程;

    (2)面积的取值范围.

    【答案】(1)

    (2)

    【分析】(1)依题意求出点P和点Q的坐标,用向量表示垂直,即可求得抛物线的方程;

    (2)先求出抛物线上的切线方程,考虑点G上,求点G到直线AB的距离,以及AB的长度,即可 的面积范围.

    (1)

    依题意可设,则.

    因为,所以,故.

    ,所以.

    故抛物线C的方程为

    (2)

    现计算抛物线在点处的切线方程为

    对抛物线方程求导得 ,在N点处的斜率为

    N点处的切线方程为 ,整理得

    则直线的方程分别为.

    因为点G在直线上,所以

    两式相减得,并由

    直线AB的斜率为

    所以直线AB的的方程为

    整理得直线的方程为.

    联立方程组 整理得

    .

    到直线的距离.

    的面积.

    由题可知,,则圆M的方程为

    因为,所以

    所以,故面积的取值范围为

    综上:抛物线的方程为面积的取值范围为.

    【点睛】求直线AB的方程时,应尽可能使用变量 ,而不是,尽可能把转化为

    因为存在符号问题,讨论符号会给计算带来很多的麻烦,

    并且要巧用GAGB联立的方程而不是解出方程.

    22.在数学中,有多种方程都可以表示心型曲线,其中著名的有笛卡尔心型曲线.如图,在直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为为该曲线上一动点.

    (1)时,求的直角坐标;

    (2)若射线逆时针旋转后与该曲线交于点,求面积的最大值.

    【答案】(1)

    (2)

    【分析】1)令,由此求得的值,进而可求的直角坐标.

    2)设出两点极坐标,通过三角形面积公式求得面积的表达式,,将表达式转换为关于的二次函数,即可求得面积的最大值.

    (1)

    因为,所以

    因为,所以,所以的极坐标为

    的直角坐标为

    (2)

    ,则.

    因为

    所以.

    ,则.

    所以

    时,有最大值,此时

    的最大值为.

    23.已知正数abcd满足,证明:

    (1)

    (2).

    【答案】(1)证明见解析

    (2)证明见解析

    【分析】1)由基本不等式证明;

    2)由柯西不等式证明.

    (1)

    因为

    所以

    当且仅当时,等号成立,

    又正数abcd满足,所以.

    (2)

    因为正数abcd满足

    所以由柯西不等式,可得

    当且仅当时,等号成立,

    .

     

    相关试卷

    2023届陕西省榆林市绥德中学高三下学期2月月考数学(理)试题含解析: 这是一份2023届陕西省榆林市绥德中学高三下学期2月月考数学(理)试题含解析,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023届陕西省榆林市高三四模数学(理)试题含解析: 这是一份2023届陕西省榆林市高三四模数学(理)试题含解析,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023届陕西省榆林市高三三模数学(理)试题含解析: 这是一份2023届陕西省榆林市高三三模数学(理)试题含解析,共16页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map