专题12 二次函数的综合-2022届中考数学压轴大题专项训练
展开专题12 二次函数的综合 2022届中考数学压轴大题专项训练(原卷版)
1.如图,直线过轴上一点,且与抛物线相交于,两点,点的坐标为.
(1)求直线的表达式及抛物线的表达式.
(2)求点的坐标.
(3)点在直线上,点在抛物线上,若,直接写出的取值范围.
(4)若抛物线上有一点(在第一象限内),使得,直接写出点的坐标.
2.已知抛物线的图象与轴相交于点和点,与轴交于点,图象的对称轴为直线.连接,有一动点在线段上运动,过点作轴的垂线,交抛物线于点,交轴于点.设点的横坐标为.
(1)求的长度;
(2)连接、,当的面积最大时,求点的坐标;
(3)当为何值时,与相似.
3.如图,在平面直角坐标系中,己知二次函数的图像与y轴交于点B(0, 4),与x轴交于点A(-1,0)和点D.
(1)求二次函数的解析式;
(2)求抛物线的顶点和点D的坐标;
(3)在抛物线上是否存在点P,使得△BOP的面积等于?如果存在,请求出点P的坐标?如果不存在,请说明理由.
4.已知抛物线y=x2﹣2x﹣3与x轴交于点A、B,与y轴交于点C,点D为OC中点,点P在抛物线上.
(1)直接写出A、B、C、D坐标;
(2)点P在第四象限,过点P作PE⊥x轴,垂足为E,PE交BC、BD于G、H,是否存在这样的点P,使PG=GH=HE?若存在,求出点P坐标;若不存在,请说明理由.
(3)若直线y=x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点,直接写出t的取值范围.
5.已知:如图,抛物线与坐标轴分别交于点,,,点是线段上方抛物线上的一个动点.
(1)求抛物线解析式;
(2)在抛物线的对称轴 上找一点,使的值最小,求出点M的坐标;
(3)当点运动到什么位置时,的面积最大?
6.如图,二次函数的图象与x轴、y轴分别交于点A(-1,0)和点B(0,2),图象的对称轴交x轴于点C,一次函数的图象经过点B,C,与二次函数图象的另一个交点为点D.
(1)求二次函数的解析式和一次函数的解析式;
(2)求点D的坐标;
(3)结合图象,请直接写出 时,x的取值范围:_____.
7.平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A,B两点,点A,B的坐标分别为(﹣3,0),(1,0),与y轴交于点C,点D为顶点.
(1)求抛物线的解析式和tan∠DAC;
(2)点E是直线AC下方的抛物线上一点,且S△ACE=2S△ACD,求点E的坐标;
(3)如图2,若点P是线段AC上的一个动点,∠DPQ=∠DAC,DP⊥DQ,则点P在线段AC上运动时,D点不变,Q点随之运动.求当点P从点A运动到点C时,点Q运动的路径长.
8.已知,点,抛物线经过点,且与直线交于点,与轴交于点(异于原点).
(1)填空:用含的代数式表示______;
(2)若是直角三角形,求的值;
(3)点是抛物线的顶点,连接与交于点,当点是三等分点时,求的值.
9.如图,在坐标系中,△ABC是等腰直角三角形,∠BAC = 90°,A(1,0),B(0,2).抛物线的图象过C点,交y轴于点E.
(1)求抛物线的解析式;
(2)在x轴上是否存在点P使得△BPC的周长最小,若存在,请求出点P坐标,若不存在,请说明理由;
(3)直线BC解析式为,若平移该抛物线的对称轴所在直线l,当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
10.把函数的图象绕点旋转180°,得到新函数的图象,我们称是关于点的相关函数,是图象的对称轴与轴交点坐标为.
(1)若,时,的相关函数为______;
(2)的值为______(用含的代数式表示);
(3)若,当时,函数的最大值为,最小值为,且,求的解析式.
11.已知函数,(为常数).
(1)当时,
①求此函数图象与轴交点坐标.
②当函数的值随的增大而增大时,自变量的取值范围为________.
(2)若已知函数经过点(1,5),求的值,并直接写出当时函数的取值范围.
(3)要使已知函数的取值范围内同时含有和这四个值,直接写出的取值范围.
12.如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,抛物线的顶点为M,对称轴交x轴于E,点D在第一象限,且在抛物线的对称轴上,DE=OC,DM=.
(1)求抛物线的对称轴方程;
(2)若DA=DC,求抛物线的解析式;
(3)在(2)的条件下,点P是抛物线对称轴上的一个动点,若在直线BM上只存在一个点Q,使∠PQC=45°,求点P的坐标.
专题13 函数综合-2022届中考数学压轴大题专项训练: 这是一份专题13 函数综合-2022届中考数学压轴大题专项训练,文件包含专题13函数综合解析版docx、专题13函数综合原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
专题07 综合探究类-2022届中考数学压轴大题专项训练: 这是一份专题07 综合探究类-2022届中考数学压轴大题专项训练,文件包含专题07综合探究类解析版docx、专题07综合探究类原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
专题21 函数与几何的综合问题的常见压轴题-【聚焦压轴】2022届中考数学压轴大题专项训练1: 这是一份专题21 函数与几何的综合问题的常见压轴题-【聚焦压轴】2022届中考数学压轴大题专项训练1,文件包含专题21函数与几何的综合问题的常见压轴题解析版-聚焦压轴2022届中考数学压轴大题专项训练doc、专题21函数与几何的综合问题的常见压轴题原卷版-聚焦压轴2022届中考数学压轴大题专项训练doc等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。