终身会员
搜索
    上传资料 赚现金

    专题二 图形规律-2022年中考数学二轮复习之重难热点提分专题

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题二 图形规律-2022年中考数学二轮复习之重难热点提分专题(原卷版).docx
    • 解析
      专题二 图形规律-2022年中考数学二轮复习之重难热点提分专题(解析版).docx
    专题二   图形规律-2022年中考数学二轮复习之重难热点提分专题(原卷版)第1页
    专题二   图形规律-2022年中考数学二轮复习之重难热点提分专题(原卷版)第2页
    专题二   图形规律-2022年中考数学二轮复习之重难热点提分专题(原卷版)第3页
    专题二   图形规律-2022年中考数学二轮复习之重难热点提分专题(解析版)第1页
    专题二   图形规律-2022年中考数学二轮复习之重难热点提分专题(解析版)第2页
    专题二   图形规律-2022年中考数学二轮复习之重难热点提分专题(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题二 图形规律-2022年中考数学二轮复习之重难热点提分专题

    展开

    这是一份专题二 图形规律-2022年中考数学二轮复习之重难热点提分专题,文件包含专题二图形规律-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题二图形规律-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。


    专题二 图形规律
    题型一:动点图形规律
    1.(2021常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2021次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2021次移动中,跳棋不可能停留的顶点是(  )

    A.C、E B.E、F C.G、C、E D.E、C、F
    【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.
    【解析】经实验或按下方法可求得顶点C,E和F棋子不可能停到.
    设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,
    因棋子移动了k次后走过的总格数是1+2+3+…+k=12k(k+1),应停在第12k(k+1)﹣7p格,
    这时P是整数,且使0≤12k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,
    12k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,
    若7<k≤2021,
    设k=7+t(t=1,2,3)代入可得,12k(k+1)﹣7p=7m+12t(t+1),
    由此可知,停棋的情形与k=t时相同,
    故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.
    故选:D.
    题型二:几何图形规律
    2.(2021烟台)如图,△OA1A2为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OAn的长度为(  )

    A.()n B.()n﹣1 C.()n D.()n﹣1
    【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,依据规律即可得出答案.
    【解析】∵△OA1A2为等腰直角三角形,OA1=1,
    ∴OA2=2;
    ∵△OA2A3为等腰直角三角形,
    ∴OA3=2=(2)2;
    ∵△OA3A4为等腰直角三角形,
    ∴OA4=22=(2)3.
    ∵△OA4A5为等腰直角三角形,
    ∴OA5=4=(2)4,
    ……
    ∴OAn的长度为(2)n﹣1.
    故选:B.
    3.(2021盐城)把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为(  )

    A.1 B.3 C.4 D.6
    【分析】根据任意一行,任意一列及两条对角线上的数之和都相等,可得第三行与第三列上的两个数之和相等,依此列出方程即可.
    【解析】由题意,可得8+x=2+7,
    解得x=1.
    故选:A.
    4.(2021•成都)如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,FA1,A1B1,B1C1,C1D1,D1E1,E1F1,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线FA1B1C1D1E1F1的长度是   .

    【分析】利用弧长公式计算即可解决问题.
    【解析】FA1的长=60⋅π⋅1180=π3,
    A1B1的长=60⋅π⋅2180=2π3,
    B1C1的长=60⋅π⋅3180=3π3,
    C1D1的长=60⋅π⋅4180=4π3,
    D1E1的长=60⋅π⋅5180=5π3,
    E1F1的长=60⋅π⋅6180=6π3,
    ∴曲线FA1B1C1D1E1F1的长度=π3+2π3+⋯+6π3=21π3=7π,
    故答案为7π.
    5.(2021•湘西州)观察下列结论:
    (1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;
    (2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;
    (3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;

    根据以上规律,在正n边形A1A2A3A4…An中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与AnM相交于O.也会有类似的结论,你的结论是   .

    【分析】根据已知所给得到规律,进而可得在正n边形A1A2A3A4…An中,对相邻的三边实施同样的操作过程会有类似的结论.
    【解析】∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=(3-2)×180°3=60°;
    (2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=(4-2)×180°4=90°;
    (3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=(5-2)×180°5=108°;

    根据以上规律,在正n边形A1A2A3A4…An中,
    对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,
    且A1M=A2N,A1N与AnM相交于O.
    也有类似的结论是A1N=AnM,∠NOAn=(n-2)×180°n.
    故答案为:A1N=AnM,∠NOAn=(n-2)×180°n.
    6.(2021潍坊)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:DA1的圆心为点A,半径为AD;A1B1的圆心为点B,半径为BA1;B1C1的圆心为点C,半径为CB1;C1D1的圆心为点D,半径为DC1;⋯DA1,A1B1,B1C1,C1D1,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则A2021B2021的长是   .

    【分析】曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,到ADn﹣1=AAn=4(n﹣1)+1,BAn=BBn=4(n﹣1)+2,再计算弧长.
    【解析】由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,ADn﹣1=AAn=4(n﹣1)+1,BAn=BBn=4(n﹣1)+2,
    故A2021B2021的半径为BA2021=BB2021=4(2021﹣1)+2=8078,A2021B2021的弧长=90180×8078π=4039π.
    故答案为:4039π.
    7.(2021徐州)如图,∠MON=30°,在OM上截取OA1=.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于   .

    【分析】利用三角形中位线定理证明A2B2=2A1B1,A3B3=2A2B2=22•A1B1,寻找规律解决问题即可.
    【解析】∵B1O=B1A1,B1A1⊥OA2,
    ∴OA1=A1A2,
    ∵B2A2⊥OM,B1A1⊥OM,
    ∴B1A1∥B2A2,
    ∴B1A1=12A2B2,
    ∴A2B2=2A1B1,
    同法可得A3B3=2A2B2=22•A1B1,…,
    由此规律可得A20B20=219•A1B1,
    ∵A1B1=OA1•tan30°=3×33=1,
    ∴A20B20=219,
    故答案为219.
    8.(2021辽阳)如图,四边形ABCD是矩形,延长DA到点E,使AE=DA,连接EB,点F1是CD的中点,连接EF1,BF1,得到△EF1B;点F2是CF1的中点,连接EF2,BF2,得到△EF2B;点F3是CF2的中点,连接EF3,BF3,得到△EF3B;…;按照此规律继续进行下去,若矩形ABCD的面积等于2,则△EFnB的面积为   .(用含正整数n的式子表示)

    【分析】先求得△EF1D的面积为1,再根据等高的三角形面积比等于底边的比可得EF1F2的面积,EF2F3的面积,…,EFn﹣1Fn的面积,以及△BCFn的面积,再根据面积的和差关系即可求解.
    【解析】∵AE=DA,点F1是CD的中点,矩形ABCD的面积等于2,
    ∴△EF1D和△EAB的面积都等于1,
    ∵点F2是CF1的中点,
    ∴△EF1F2的面积等于12,
    同理可得△EFn﹣1Fn的面积为12n-1,
    ∵△BCFn的面积为2×12n÷2=12n,
    ∴△EFnB的面积为2+1﹣1-12-⋯-12n-1-12n=2﹣(1-12n)=2n+12n.
    故答案为:2n+12n.

    题型三:几何函数图形规律
    9.(2021荆门)在平面直角坐标系xOy中,Rt△AOB的直角顶点B在y轴上,点A的坐标为(1,),将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',过A'作A'C垂直于OA'交y轴于点C,则点C的坐标为(  )

    A.(0,﹣2) B.(0,﹣3) C.(0,﹣4) D.(0,﹣4)
    【分析】依据轴对称的性质可得OB'=OB=3,A′B′=AB=1,OA′=OA=2,进而通过证得△A′OB′∽△COA′,求得OC=4,即可证得C的坐标为(0,﹣4).
    【解析】∵点A的坐标为(1,3),
    ∴AB=1,OB=3,
    ∴OA=AB2+OB2=12+(3)2=2,
    ∵将Rt△AOB沿直线y=﹣x翻折,得到Rt△A'OB',
    ∴OB'=OB=3,A′B′=AB=1,OA′=OA=2,
    ∴A'(-3,﹣1),
    ∵过A'作A'C垂直于OA'交y轴于点C,
    ∴∠A′OC+∠A′CO=90°,
    ∵∠A′OB′+∠A′OC=90°,
    ∴∠A′CO=∠A′OB′,
    ∵∠A′B′O=∠OA′C=90°,
    ∴△A′OB′∽△COA′,
    ∴OCOA'=OA'A'B',即OC2=21,
    ∴OC=4,
    ∴C(0,﹣4),
    故选:C.
    10.(2021鄂州)如图,点A1,A2,A3…在反比例函数y=(x>0)的图象上,点B1,B2,B3,…Bn在y轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=…,直线y=x与双曲线y=交于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3⊥B2A3…,则Bn(n为正整数)的坐标是(  )

    A.(2,0) B.(0,)
    C.(0,) D.(0,2)
    【分析】由题意,△OA1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,想办法求出OB1,OB2,OB3,OB4,…,探究规律,利用规律解决问题即可得出结论.
    【解析】由题意,△OA1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,
    ∵A1(1,1),
    ∴OB1=2,设A2(m,2+m),
    则有m(2+m)=1,
    解得m=2-1,
    ∴OB2=22,
    设A3(a,22+n),则有n=a(22+a)=1,
    解得a=3-2,
    ∴OB3=23,
    同法可得,OB4=24,
    ∴OBn=2n,
    ∴Bn(0,2n).
    故选:D.
    11.(2021温州)点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为  .

    【分析】设CD=DE=OE=a,则P(k3a,3a),Q(k2a,2a),R(ka,a),推出CP=3k3a,DQ=k2a,ER=ka,推出OG=AG,OF=2FG,OF=23GA,推出S1=23S3=2S2,根据S1+S3=27,求出S1,S3,S2即可.
    【解析】∵CD=DE=OE,
    ∴可以假设CD=DE=OE=a,
    则P(k3a,3a),Q(k2a,2a),R(ka,a),
    ∴CP=k3a,DQ=k2a,ER=ka,
    ∴OG=AG,OF=2FG,OF=23GA,
    ∴S1=23S3=2S2,
    ∵S1+S3=27,
    ∴S3=815,S1=545,S2=275,
    故答案为275.
    12.(2021•自贡)如图,直线y=与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=   ,前25个等边三角形的周长之和为  .

    【分析】设直线y=-3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.首先证明∠ADO=60°,可得AB=2BE,AC=2CF,由直线y=-3x+b与双曲线y=kx在第一象限交于点B、C两点,可得-3x+b=kx,整理得,-3x2+bx﹣k=0,由韦达定理得:x1x2=33k,即EB•FC=33k,由此构建方程求出k即可,第二个问题分别求出第一个,第二个,第三个,第四个三角形的周长,探究规律后解决问题.
    【解析】设直线y=-3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.
    ∵y=-3x+b,
    ∴当y=0时,x=33b,即点D的坐标为(33b,0),
    当x=0时,y=b,即A点坐标为(0,b),
    ∴OA=﹣b,OD=-33b.
    ∵在Rt△AOD中,tan∠ADO=OAOD=3,
    ∴∠ADO=60°.
    ∵直线y=-3x+b与双曲线y=kx在第三象限交于B、C两点,
    ∴-3x+b=kx,
    整理得,-3x2+bx﹣k=0,
    由韦达定理得:x1x2=33k,即EB•FC=33k,
    ∵EBAB=cos60°=12,
    ∴AB=2EB,
    同理可得:AC=2FC,
    ∴AB•AC=(2EB)(2FC)=4EB•FC=433k=16,
    解得:k=43.
    由题意可以假设D1(m,m3),
    ∴m2•3=43,
    ∴m=2
    ∴OE1=4,即第一个三角形的周长为12,
    设D2(4+n,3n),
    ∵(4+n)•3n=43,
    解得n=22-2,
    ∴E1E2=42-4,即第二个三角形的周长为122-12,
    设D3(42+a,3a),
    由题意(42+a)•3a=43,
    解得a=23-22,即第三个三角形的周长为123-122,
    …,
    ∴第四个三角形的周长为124-123,
    ∴前25个等边三角形的周长之和12+122-12+123-122+124-123+⋯+1225-1224=1225=60,
    故答案为43,60.

    13.(2021齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+,0),得到等腰直角三角形⑤;依此规律…,则第2021个等腰直角三角形的面积是   .

    【分析】根据A1(0,2)确定第1个等腰直角三角形(即等腰直角三角形①)的面积,根据A2(6,0)确定第1个等腰直角三角形(即等腰直角三角形②)的面积,…,同理,确定规律可得结论.
    【解析】∵点A1(0,2),
    ∴第1个等腰直角三角形的面积=12×2×2=2,
    ∵A2(6,0),
    ∴第2个等腰直角三角形的边长为6-22=22,
    ∴第2个等腰直角三角形的面积=12×22×22=4=22,
    ∵A4(10,42),
    ∴第3个等腰直角三角形的边长为10﹣6=4,
    ∴第3个等腰直角三角形的面积=12×4×4=8=23,

    则第2021个等腰直角三角形的面积是22021;
    故答案为:22021(形式可以不同,正确即得分).











    相关试卷

    专题一 代数规律-2022年中考数学二轮复习之重难热点提分专题(含答案):

    这是一份专题一 代数规律-2022年中考数学二轮复习之重难热点提分专题(含答案),文件包含专题一代数规律-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题一代数规律-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    专题十二 折叠旋转问题-2022年中考数学二轮复习之重难热点提分专题:

    这是一份专题十二 折叠旋转问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题十二折叠旋转问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题十二折叠旋转问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    专题七 双曲线问题-2022年中考数学二轮复习之重难热点提分专题:

    这是一份专题七 双曲线问题-2022年中考数学二轮复习之重难热点提分专题,文件包含专题七双曲线问题-2022年中考数学二轮复习之重难热点提分专题解析版docx、专题七双曲线问题-2022年中考数学二轮复习之重难热点提分专题原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题二 图形规律-2022年中考数学二轮复习之重难热点提分专题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map