终身会员
搜索
    上传资料 赚现金

    北师大版八年级数学下册 4.1 因式分解_2(教案)

    立即下载
    加入资料篮
    北师大版八年级数学下册 4.1 因式分解_2(教案)第1页
    北师大版八年级数学下册 4.1 因式分解_2(教案)第2页
    北师大版八年级数学下册 4.1 因式分解_2(教案)第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版八年级下册1 因式分解教学设计

    展开

    这是一份北师大版八年级下册1 因式分解教学设计,共36页。教案主要包含了教学目标,教学重点,教学难点,教学方法,课时安排,教学准备,教学过程,第一课时等内容,欢迎下载使用。


    【教学目标】
    一、教学知识点
    使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系。
    二、能力训练要求
    通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力。
    三、情感与价值观要求
    通过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。
    【教学重点】
    1.理解因式分解的意义。
    2.识别分解因式与整式乘法的关系。
    【教学难点】
    通过观察,归纳分解因式与整式乘法的关系。
    【教学方法】
    观察讨论法
    【课时安排】
    6课时
    【教学准备】
    投影片一张
    【教学过程】
    【第一课时】
    一、创设问题情境,引入新课
    [师]大家会计算(a+b)(a-b)吗?
    [生]会。(a+b)(a-b)=a2-b2.
    [师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的。从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?
    [生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立。
    [师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题。
    二、讲授新课
    1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流。
    [生]993-99能被100整除。
    因为993-99
    =99×992-99
    =99×(992-1)
    =99×9800
    =99×98×100
    其中有一个因数为100,所以993-99能被100整除。
    [师]993-99还能被哪些正整数整除?
    [生]还能被99,98,980,990,9702等整除。
    [师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的
    形式。
    三、议一议
    你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。
    [师]大家可以观察a3-a与993-99这两个代数式。
    [生]a3-a=a(a2-1)=a(a-1)(a+1)
    四、做一做
    (1)计算下列各式:
    ①(m+4)(m-4)=__________;
    ②(y-3)2=__________;
    ③3x(x-1)=__________;
    ④m(a+b+c)=__________;
    ⑤a(a+1)(a-1)=__________。
    [生]解:①(m+4)(m-4)=m2-16;
    ②(y-3)2=y2-6y+9;
    ③3x(x-1)=3x2-3x;
    ④m(a+b+c)=ma+mb+mc;
    ⑤a(a+1)(a-1)=a(a2-1)=a3-A.
    (2)根据上面的算式填空:
    ①3x2-3x=( )( );
    ②m2-16=( )( );
    ③ma+mb+mc=( )( );
    ④y2-6y+9=( )2.
    ⑤a3-a=( )( )。
    [生]把等号左右两边的式子调换一下即可。即:
    ①3x2-3x=3x(x-1);
    ②m2-16=(m+4)(m-4);
    ③ma+mb+mc=m(a+b+c);
    ④y2-6y+9=(y-3)2;
    ⑤a3-a=a(a2-1)=a(a+1)(a-1)。
    [师]能分析一下两个题中的形式变换吗?
    [生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式。
    [师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解。
    把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式(factrizatin)。
    五、想一想
    由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?
    [生]由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是分解因式,这两种过程正好相反。
    [生]由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反。
    [师]非常棒。下面我们一起来总结一下。
    如:m(a+b+c)=ma+mb+mc(1)
    ma+mb+mc=m(a+b+c)(2)
    联系:等式(1)和(2)是同一个多项式的两种不同表现形式。
    区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算。
    等式(2)是把一个多项式化成几个整式的积的形式,是因式分解。
    即ma+mb+mc m(a+b+c)。
    所以,因式分解与整式乘法是相反方向的变形。
    六、例题
    下列各式从左到右的变形,哪些是因式分解?
    (1)4a(a+2b)=4a2+8ab;
    (2)6ax-3ax2=3ax(2-x);
    (3)a2-4=(a+2)(a-2);
    (4)x2-3x+2=x(x-3)+2.
    [生](1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,而不是因式分解;
    (2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;
    (3)和(2)相同,是因式分解;
    (4)是因式分解。
    [师]大家认可吗?
    [生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解。
    七、课堂练习
    连一连
    解:
    八、课时小结
    本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。
    【作业布置】
    1.连一连
    解:
    2.解:(2)、(3)是分解因式。
    3.因19992+1999=1999(1999+1)=1999×2000,所以19992+1999能被1999整除,也能被2000整除。
    (2)因为16.9×+15.1×
    =×(16.9+15.1)
    =×32=4
    所以16.9× +15.1×能被4整除。
    4.解:当R1=19.2,R2=32.4,R3=35.4,I=2.5时,
    IR1+IR2+IR3
    =I(R1+R2+R3)
    =2.5×(19.2+32.4+35.4)
    =2.5×87
    =217.5
    5.活动与探究
    已知a=2,b=3,c=5.
    求代数式a(a+b-c)+b(a+b-c)+c(c-a-b)的值。
    解:当a=2,b=3,c=5时,
    a(a+b-c)+b(a+b-c)+c(c-a-b)
    =a(a+b-c)+b(a+b-c)-c(a+b-c)
    =(a+b-c)(a+b-c)
    =(2+3-5)2=0
    【板书设计】
    分解因式
    一、1.讨论993-99能被100整除吗?
    2.议一议
    3.做一做
    4.想一想(讨论整式乘法与分解因式的联系与区别)
    5.例题讲解
    二、课堂练习
    三、课时小结
    四、作业布置
    【第二课时】
    提公因式法
    【教学目标】
    一、教学知识点
    让学生了解多项式公因式的意义,初步学会使用提公因式法分解因式。
    二、能力训练要求
    通过找公因式,培养学生的观察能力。
    三、情感与价值观要求
    在用提公因式法分解因式时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用。
    【教学重点】
    能观察出多项式的公因式,并根据分配律把公因式提出来。
    【教学难点】
    让学生识别多项式的公因式。
    【教学方法】
    独立思考——合作交流法。
    【教学准备】
    投影片两张
    【教学过程】
    一、创设问题情境,引入新课
    一块场地由三个矩形组成,这些矩形的长分别为,,,宽都是,求这块场地的面积。
    解法一:S=× + × + × =++=2
    解法二:S=× + × + × = ( ++)=×4=2
    [师]从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些。这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法。
    二、新课讲解
    1.公因式与提公因式法分解因式的概念。
    [师]若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接。
    ma+mb+mc=m(a+b+c)
    从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?
    [生]等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式。
    [师]由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式。
    由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
    2.例题讲解
    [例1]将下列各式分解因式:
    (1)3x+6;
    (2)7x2-21x;
    (3)8a3b2-12ab3c+abc
    (4)-24x3-12x2+28x。
    分析:首先要找出各项的公因式,然后再提取出来。
    [师]请大家互相交流。
    [生]解:(1)3x+6=3x+3×2=3(x+2);
    (2)7x2-21x=7x·x-7x·3=7x(x-3);
    (3)8a3b2-12ab3c+abc
    =8a2b·ab-12b2c·ab+ab·c
    =ab(8a2b-12b2c+c)
    (4)-24x3-12x2+28x
    =-4x(6x2+3x-7)
    3.议一议
    [师]通过刚才的练习,下面大家互相交流,总结出公因式的一般步骤。
    [生]首先找出各项系数的最大公约数,如8和12的最大公约数是4.
    其次找出各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的。
    4.想一想
    [师]大家总结得非常棒。例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系?
    [生]提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式。
    三、课堂练习
    (一)随堂练习
    1.写出下列多项式各项的公因式。
    (1)ma+mb (m)
    (2)4kx-8ky (4k)
    (3)5y3+20y2 (5y2)
    (4)a2b-2ab2+ab (ab)
    2.把下列各式分解因式
    (1)8x-72=8(x-9)
    (2)a2b-5ab=ab(a-5)
    (3)4m3-6m2=2m2(2m-3)
    (4)a2b-5ab+9b=b(a2-5a+9)
    (5)-a2+ab-ac=-(a2-ab+ac)=-a(a-b+c)
    (6)-2x3+4x2-2x=-(2x3-4x2+2x)=-2x(x2-2x+1)
    (二)补充练习
    投影片(§2.2.1 B)
    把3x2-6xy+x分解因式
    [生]解:3x2-6xy+x=x(3x-6y)
    [师]大家同意他的做法吗?
    [生]不同意。
    改正:3x2-6xy+x=x(3x-6y+1)
    [师]后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉。
    在分解因式时应如何减少上述错误呢?
    将x写成x·1,这样可知提出一个因式x后,另一个因式是1.
    四、课时小结
    1.提公因式法分解因式的一般形式,如:
    ma+mb+mc=m(a+b+c)。
    这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式。
    2.提公因式法分解因式,关键在于观察、发现多项式的公因式。
    3.找公因式的一般步骤
    (1)若是各项系数是整系数,取系数的最大公约数;
    (2)取相同的字母,字母的指数取较低的;
    (3)取相同的多项式,多项式的指数取较低的。
    (4)所有这些因式的乘积即为公因式。
    4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即遗漏项的错误发生。
    5.公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题。
    【作业布置】
    1.解:(1)2x2-4x=2x(x-2);
    (2)8m2n+2mn=2mn(4m+1);
    (3)a2x2y-axy2=axy(ax-y);
    (4)3x3-3x2-9x=3x(x2-x-3);
    (5)-24x2y-12xy2+28y3
    =-(24x2y+12xy2-28y3)
    =-4y(6x2+3xy-7y2);
    (6)-4a3b3+6a2b-2ab
    =-(4a3b3-6a2b+2ab)
    =-2ab(2a2b2-3a+1);
    (7)-2x2-12xy2+8xy3
    =-(2x2+12xy2-8xy3)
    =-2x(x+6y2-4y3);
    (8)-3ma3+6ma2-12ma
    =-(3ma3-6ma2+12ma)
    =-3ma(a2-2a+4);
    2.利用因式分解进行计算
    (1)121×0.13+12.1×0.9-12×1.21
    =12.1×1.3+12.1×0.9-1.2×12.1
    =12.1×(1.3+0.9-1.2)
    =12.1×1=12.1
    (2)2.34×13.2+0.66×13.2-26.4
    =13.2×(2.34+0.66-2)
    =13.2×1=13.2
    (3)当R1=20,R2=16,R3=12,π=3.14时
    πR12+πR22+πR32
    =π(R12+R22+R32)
    =3.14×(202+162+122)
    =2512
    3.活动与探究
    利用分解因式计算:
    (1)32004-32003;
    (2)(-2)101+(-2)100.
    解:(1)32004-32003
    =32003×(3-1)
    =32003×2
    =2×32003
    (2)(-2)101+(-2)100
    =(-2)100×(-2+1)
    =(-2)100×(-1)
    =-(-2)100
    =-2100
    【板书设计】
    提公因式法(一)
    一、1.公因式与提公因式法分解因式的概念
    2.例题讲解(例1)
    3.议一议(找公因式的一般步骤)
    4.想一想
    二、课堂练习
    1.随堂练习
    2.补充练习
    三、课时小结
    四、作业布置
    参考练习
    一、把下列各式分解因式:
    1.2a-4b;
    2.ax2+ax-4a;
    3.3ab2-3a2b;
    4.2x3+2x2-6x;
    5.7x2+7x+14;
    6.-12a2b+24ab2;
    7.xy-x2y2-x3y3;
    8.27x3+9x2y。
    参考答案:
    1.2(a-2b);
    2.a(x2+x-4);
    3.3ab(b-a);
    4.2x(x2+x-3);
    5.7(x2+x+2);
    6.-12ab(a-2b);
    7.xy(1-xy-x2y2);
    8.9x2(3x+y)。
    【第三课时】
    提公因式法
    【教学目标】
    一、教学知识点
    进一步让学生掌握用提公因式法分解因式的方法。
    二、能力训练要求
    进一步培养学生的观察能力和类比推理能力。
    三、情感与价值观要求
    通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点。
    【教学重点】
    能观察出公因式是多项式的情况,并能合理地进行分解因式。
    【教学难点】
    准确找出公因式,并能正确进行分解因式。
    【教学方法】
    类比学习法
    【教学过程】
    一、创设问题情境,引入新课
    [师]上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜。
    二、新课讲解
    (1)例题讲解
    [例2]把a(x-3)+2b(x-3)分解因式。
    分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来。
    解:a(x-3)+2b(x-3)=(x-3)(a+2b)
    [师]从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢?
    [生]不是,是两个多项式的乘积。
    [例3]把下列各式分解因式:
    (1)a(x-y)+b(y-x);
    (2)6(m-n)3-12(n-m)2.
    分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y)。(m-n)3与(n-m)2也是如此。
    解:(1)a(x-y)+b(y-x)
    =a(x-y)-b(x-y)
    =(x-y)(a-b)
    (2)6(m-n)3-12(n-m)2
    =6(m-n)3-12[-(m-n)]2
    =6(m-n)3-12(m-n)2
    =6(m-n)2(m-n-2)。
    三、做一做
    请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:
    (1)2-a=__________(a-2);
    (2)y-x=__________(x-y);
    (3)b+a=__________(a+b);
    (4)(b-a)2=__________(a-b)2;
    (5)-m-n=__________-(m+n);
    (6)-s2+t2=__________(s2-t2)。
    解:(1)2-a=-(a-2);
    (2)y-x=-(x-y);
    (3)b+a=+(a+b);
    (4)(b-a)2=+(a-b)2;
    (5)-m-n=-(m+n);
    (6)-s2+t2=-(s2-t2)。
    四、课堂练习
    把下列各式分解因式:
    解:(1)x(a+b)+y(a+b)
    =(a+b)(x+y);
    (2)3a(x-y)-(x-y)
    =(x-y)(3a-1);
    (3)6(p+q)2-12(q+p)
    =6(p+q)2-12(p+q)
    =6(p+q)(p+q-2);
    (4)a(m-2)+b(2-m)
    =a(m-2)-b(m-2)
    =(m-2)(a-b);
    (5)2(y-x)2+3(x-y)
    =2[-(x-y)]2+3(x-y)
    =2(x-y)2+3(x-y)
    =(x-y)(2x-2y+3);
    (6)mn(m-n)-m(n-m)2
    =mn(m-n)-m(m-n)2
    =m(m-n)[n-(m-n)]
    =m(m-n)(2n-m)。
    补充练习
    把下列各式分解因式
    解:1.5(x-y)3+10(y-x)2
    =5(x-y)3+10(x-y)2
    =5(x-y)2[(x-y)+2]
    =5(x-y)2(x-y+2);
    2. m(a-b)-n(b-a)
    =m(a-b)+n(a-b)
    =(a-b)(m+n);
    3. m(m-n)+n(n-m)
    =m(m-n)-n(m-n)
    =(m-n)(m-n)=(m-n)2;
    4. m(m-n)(p-q)-n(n-m)(p-q)
    = m(m-n)(p-q)+n(m-n)(p-q)
    =(m-n)(p-q)(m +n);
    5.(b-a)2+a(a-b)+b(b-a)
    =(b-a)2-a(b-a)+b(b-a)
    =(b-a)[(b-a)-a+b]
    =(b-a)(b-a-a+b)
    =(b-a)(2b-2a)
    =2(b-a)(b-a)
    =2(b-a)2
    五、课时小结
    本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式。
    【作业布置】
    活动与探究
    把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式。
    解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)
    =(a-b+c)[(a+b-c)-(b-a+c)]
    =(a-b+c)(a+b-c-b+a-c)
    =(a-b+c)(2a-2c)
    =2(a-b+c)(a-c)
    【板书设计】
    提公因式法(二)
    一、1.例题讲解
    2.做一做
    二、课堂练习
    三、课时小结
    四、作业布置
    参考练习
    把下列各式分解因式:
    1.a(x-y)-b(y-x)+c(x-y);
    2.x2y-3xy2+y3;
    3.2(x-y)2+3(y-x);
    4.5(m-n)2+2(n-m)3.
    参考答案:
    解:1.a(x-y)-b(y-x)+c(x-y)
    =a(x-y)+b(x-y)+c(x-y)
    =(x-y)(a+b+c);
    2.x2y-3xy2+y3
    =y(x2-3xy+y2);
    3.2(x-y)2+3(y-x)
    =2(x-y)2-3(x-y)
    =(x-y)[2(x-y)-3]
    =(x-y)(2x-2y-3);
    4.5(m-n)2+2(n-m)3
    =5(m-n)2+2[-(m-n)]3
    =5(m-n)2-2(m-n)3
    =(m-n)2[5-2(m-n)]
    =(m-n)2(5-2m+2n)。
    【第四课时】
    运用公式法
    【教学目标】
    一、教学知识点
    1.使学生了解运用公式法分解因式的意义;
    2.使学生掌握用平方差公式分解因式。
    3.使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式。
    二、能力训练要求
    1.通过对平方差公式特点的辨析,培养学生的观察能力。
    2.训练学生对平方差公式的运用能力。
    三、情感与价值观要求
    在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法。
    【教学重点】
    让学生掌握运用平方差公式分解因式。
    【教学难点】
    将单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式能力。
    【教学方法】
    引导自学法
    【教学准备】
    投影片两张
    【教学过程】
    一、创设问题情境,引入新课
    [师]在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,如果各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
    如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法。
    二、新课讲解
    [师]1.请看乘法公式
    (a+b)(a-b)=a2-b2 (1)
    左边是整式乘法,右边是一个多项式,把这个等式反过来就是
    a2-b2=(a+b)(a-b)(2)
    左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?
    [生]符合因式分解的定义,因此是因式分解。
    [师]对,是利用平方差公式进行的因式分解。第(1)个等式可以看作是整式乘法中的平方差公式,第(2)个等式可以看作是因式分解中的平方差公式。
    2.公式讲解
    [师]请大家观察式子a2-b2,找出它的特点。
    [生]是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差。
    [师]如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积。
    如x2-16=(x)2-42=(x+4)(x-4)。
    9 m 2-4n2=(3 m )2-(2n)2
    =(3 m +2n)(3 m -2n)
    3.例题讲解
    [例1]把下列各式分解因式:
    (1)25-16x2;
    (2)9a2-b2.
    解:(1)25-16x2=52-(4x)2
    =(5+4x)(5-4x);
    (2)9a2- b2=(3a)2-(b)2
    =(3a+b)(3a-b)。
    [例2]把下列各式分解因式:
    (1)9(m+n)2-(m-n)2;
    (2)2x3-8x。
    解:(1)9(m +n)2-(m-n)2
    =[3(m +n)]2-(m-n)2
    =[3(m +n)+(m-n)][3(m +n)-(m-n)]
    =(3 m +3n+ m-n)(3 m +3n-m +n)
    =(4 m +2n)(2 m +4n)
    =4(2 m +n)(m +2n)
    (2)2x3-8x=2x(x2-4)
    =2x(x+2)(x-2)
    说明:例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法。
    补充例题
    投影片
    判断下列分解因式是否正确。
    (1)(a+b)2-c2=a2+2ab+b2-c2.
    (2)a4-1=(a2)2-1=(a2+1)·(a2-1)。
    [生]解:(1)不正确。
    本题错在对分解因式的概念不清,左边是多项式的形式,右边应是整式乘积的形式,但(1)中还是多项式的形式,因此,最终结果是未对所给多项式进行因式分解。
    (2)不正确。
    错误原因是因式分解不到底,因为a2-1还能继续分解成(a+1)(a-1)。
    应为a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1)。
    三、课堂练习
    (一)随堂练习
    1.判断正误
    解:(1)x2+y2=(x+y)(x-y);(×)
    (2)x2-y2=(x+y)(x-y);(√)
    (3)-x2+y2=(-x+y)(-x-y);(×)
    (4)-x2-y2=-(x+y)(x-y)。(×)
    2.把下列各式分解因式
    解:(1)a2b2-m2
    =(ab)2-m 2
    =(ab+ m)(ab-m);
    (2)(m-a)2-(n+b)2
    =[(m-a)+(n+b)][(m-a)-(n+b)]
    =(m-a+n+b)(m-a-n-b);
    (3)x2-(a+b-c)2
    =[x+(a+b-c)][x-(a+b-c)]
    =(x+a+b-c)(x-a-b+c);
    (4)-16x4+81y4
    =(9y2)2-(4x2)2
    =(9y2+4x2)(9y2-4x2)
    =(9y2+4x2)(3y+2x)(3y-2x)
    3.解:S剩余=a2-4b2.
    当a=3.6,b=0.8时,
    S剩余=3.62-4×0.82=3.62-1.62=5.2×2=10.4(cm2)
    答:剩余部分的面积为10.4 cm2.
    (二)补充练习
    投影片(§2.3.1 B)
    把下列各式分解因式
    (1)36(x+y)2-49(x-y)2;
    (2)(x-1)+b2(1-x);
    (3)(x2+x+1)2-1.
    解:(1)36(x+y)2-49(x-y)2
    =[6(x+y)]2-[7(x-y)]2
    =[6(x+y)+7(x-y)][6(x+y)-7(x-y)]
    =(6x+6y+7x-7y)(6x+6y-7x+7y)
    =(13x-y)(13y-x);
    (2)(x-1)+b2(1-x)
    =(x-1)-b2(x-1)
    =(x-1)(1-b2)
    =(x-1)(1+b)(1-b);
    (3)(x2+x+1)2-1
    =(x2+x+1+1)(x2+x+1-1)
    =(x2+x+2)(x2+x)
    =x(x+1)(x2+x+2)
    四、课时小结
    我们已学习过的因式分解方法有提公因式法和运用平方差公式法。如果多项式各项含有公因式,则第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行。
    第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止。
    【作业布置】
    1.解:(1)a2-81=(a+9)(a-9);
    (2)36-x2=(6+x)(6-x);
    (3)1-16b2=1-(4b)2=(1+4b)(1-4b);
    (4)m 2-9n2=(m +3n)(m-3n);
    (5)0.25q2-121p2
    =(0.5q+11p)(0.5q-11p);
    (6)169x2-4y2=(13x+2y)(13x-2y);
    (7)9a2p2-b2q2
    =(3ap+bq)(3ap-bq);
    (8)a2-x2y2=(a+xy)( a-xy);
    2.解:(1)(m+n)2-n2=(m +n+n)(m +n-n)= m(m +2n);
    (2)49(a-b)2-16(a+b)2
    =[7(a-b)]2-[4(a+b)]2
    =[7(a-b)+4(a+b)][7(a-b)-4(a+b)]
    =(7a-7b+4a+4b)(7a-7b-4a-4b)
    =(11a-3b)(3a-11b);
    (3)(2x+y)2-(x+2y)2
    =[(2x+y)+(x+2y)][(2x+y)-(x+2y)]
    =(3x+3y)(x-y)
    =3(x+y)(x-y);
    (4)(x2+y2)-x2y2
    =(x2+y2+xy)(x2+y2-xy);
    (5)3ax2-3ay4=3a(x2-y4)
    =3a(x+y2)(x-y2)
    (6)p4-1=(p2+1)(p2-1)
    =(p2+1)(p+1)(p-1)。
    3.解:S环形=πR2-πr2=π(R2-r2)
    =π(R+r)(R-r)
    当R=8.45,r=3.45,π=3.14时,
    S环形=3.14×(8.45+3.45)(8.45-3.45)=3.14×11.9×5=186.83(cm2)
    答:两圆所围成的环形的面积为186.83 cm2.
    4.活动与探究
    把(a+b+c)(bc+ca+ab)-abc分解因式
    解:(a+b+c)(bc+ca+ab)-abc
    =[a+(b+c)][bc+a(b+c)]-abc
    =abc+a2(b+c)+bc(b+c)+a(b+c)2-abc
    =a2(b+c)+bc(b+c)+a(b+c)2
    =(b+c)[a2+bc+a(b+c)]
    =(b+c)[a2+bc+ab+ac]
    =(b+c)[a(a+b)+c(a+b)]
    =(b+c)(a+b)(a+c)
    【板书设计】
    运用公式法(一)
    一、1.由整式乘法中的平方差公式推导因式分解中的平方差公式。
    2.公式讲解
    3.例题讲解
    补充例题
    二、课堂练习
    1.随堂练习
    2.补充练习
    三、课时小结
    四、作业布置
    参考练习
    把下列各式分解因式:
    (1)49x2-121y2;
    (2)-25a2+16b2;
    (3)144a2b2-0.81c2;
    (4)-36x2+y2;
    (5)(a-b)2-1;
    (6)9x2-(2y+z)2;
    (7)(2m-n)2-(m-2n)2;
    (8)49(2a-3b)2-9(a+b)2.
    解:(1)49x2-121y2
    =(7x+11y)(7x-11y);
    (2)-25a2+16b2=(4b)2-(5a)2
    =(4b+5a)(4b-5a);
    (3)144a2b2-0.81c2
    =(12ab+0.9c)(12ab-0.9c);
    (4)-36x2+y2=(y)2-(6x)2
    =(y+6x)(y-6x);
    (5)(a-b)2-1=(a-b+1)(a-b-1);
    (6)9x2-(2y+z)2
    =[3x+(2y+z)][3x-(2y+z)]
    =(3x+2y+z)(3x-2y-z);
    (7)(2m-n)2-(m-2n)2
    =[(2 m-n)+(m-2n)][(2 m-n)-(m-2n)]
    =(3 m-3n)(m +n)
    =3(m-n)(m +n)
    (8)49(2a-3b)2-9(a+b)2
    =[7(2a-3b)]2-[3(a+b)]2
    =[7(2a-3b)+3(a+b)][7(2a-3b)-3(a+b)]
    =(14a-21b+3a+3b)(14a-21b-3a-3b)
    =(17a-18b)(11a-24b)
    【第五课时】
    运用公式法
    【教学目标】
    一、教学知识点
    1.使学生会用完全平方公式分解因式。
    2.使学生学习多步骤,多方法的分解因式。
    二、能力训练要求
    在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力。
    三、情感与价值观要求
    通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力。
    【教学重点】
    让学生掌握多步骤、多方法分解因式方法。
    【教学难点】
    让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式。
    【教学方法】
    观察—>发现—>运用法
    【教学准备】
    投影片两张
    【教学过程】
    一、创设问题情境,引入新课
    [师]我们知道,因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法。现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?
    在前面我们不仅学习了平方差公式
    (a+b)(a-b)=a2-b2
    而且还学习了完全平方公式
    (a±b)2=a2±2ab+b2
    本节课,我们就要学习用完全平方公式分解因式。
    二、新课
    1.推导用完全平方公式分解因式的公式以及公式的特点。
    [师]由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?
    [生]可以。
    将完全平方公式倒写:
    a2+2ab+b2=(a+b)2;
    a2-2ab+b2=(a-b)2.
    便得到用完全平方公式分解因式的公式。
    [师]很好。那么什么样的多项式才可以用这个公式分解因式呢?请大家互相交流,找出这个多项式的特点。
    [生]从上面的式子来看,两个等式的左边都是三项,其中两项符号为“+”,是一个整式的平方,还有一项符号可“+”可“-”,它是那两项乘积的两倍。凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解。
    [师]左边的特点有(1)多项式是三项式;
    (2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;
    (3)另一项是这两数或两式乘积的2倍。
    右边的特点:这两数或两式和(差)的平方。
    用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方。
    形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式。
    由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
    练一练
    下列各式是不是完全平方式?
    (1)a2-4a+4;
    (2)x2+4x+4y2;
    (3)4a2+2ab+b2;
    (4)a2-ab+b2;
    (5)x2-6x-9;
    (6)a2+a+0.25.
    [师]判断一个多项式是否为完全平方式,要考虑三个条件,项数是三项;其中有两项同号且能写成两个数或式的平方;另一项是这两数或式乘积的2倍。
    [生](1)是。
    (2)不是;因为4x不是x与2y乘积的2倍;
    (3)是;
    (4)不是。ab不是a与b乘积的2倍。
    (5)不是,x2与-9的符号不统一。
    (6)是。
    2.例题讲解
    [例1]把下列完全平方式分解因式:
    (1)x2+14x+49;
    (2)(m+n)2-6(m +n)+9.
    [师]分析:大家先把多项式化成符合完全平方公式特点的形式,然后再根据公式分解因式。公式中的a,b可以是单项式,也可以是多项式。
    解:(1)x2+14x+49=x2+2×7x+72=(x+7)2
    (2)(m +n)2-6(m +n)+9=(m +n)2-2·(m +n)×3+32=[(m +n)-3]2=(m +n-3)2.
    [例2]把下列各式分解因式:
    (1)3ax2+6axy+3ay2;
    (2)-x2-4y2+4xy。
    [师]分析:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,若有公因式应先提取公因式,再考虑用完全平方公式分解因式。
    如果三项中有两项能写成两数或式的平方,但符号不是“+”号时,可以先提取“-”号,然后再用完全平方公式分解因式。
    解:(1)3ax2+6axy+3ay2
    =3a(x2+2xy+y2)
    =3a(x+y)2
    (2)-x2-4y2+4xy
    =-(x2-4xy+4y2)
    =-[x2-2·x·2y+(2y)2]
    =-(x-2y)2
    三、课堂练习
    1.解:(1)是完全平方式
    x2-x+=x2-2·x·+()2=(x-)2
    (2)不是完全平方式,因为3ab不符合要求。
    (3)是完全平方式
    m2+3 m n+9n2
    =( m)2+2× m×3n+(3n)2
    =( m +3n)2
    (4)不是完全平方式
    2.解:(1)x2-12xy+36y2
    =x2-2·x·6y+(6y)2
    =(x-6y)2;
    (2)16a4+24a2b2+9b4
    =(4a2)2+2·4a2·3b2+(3b2)2
    =(4a2+3b2)2
    (3)-2xy-x2-y2
    =-(x2+2xy+y2)
    =-(x+y)2;
    (4)4-12(x-y)+9(x-y)2
    =22-2×2×3(x-y)+[3(x-y)]2
    =[2-3(x-y)]2
    =(2-3x+3y)2
    补充练习
    把下列各式分解因式:
    (1)4a2-4ab+b2;
    (2)a2b2+8abc+16c2;
    (3)(x+y)2+6(x+y)+9;
    (4)-+n2;
    (5)4(2a+b)2-12(2a+b)+9;
    (6)x2y-x4-
    解:(1)4a2-4ab+b2=(2a)2-2·2a·b+b2=(2a-b)2;
    (2)a2b2+8abc+16c2=(ab)2+2·ab·4c+(4c)2=(ab+4c)2;
    (3)(x+y)2+6(x+y)+9
    =(x+y+3)2;
    (4)-+n2=()2-2××n+n2=(-n)2;
    (5)4(2a+b)2-12(2a+b)+9
    =[2(2a+b)]2-2×2(2a+b)×3+32
    =[2(2a+b)-3]2
    =(4a+2b-3)2;
    (6)x2y-x4-
    =-(x4-x2y+)
    =-[(x2)2-2·x2·+()2]
    =-(x2-)2
    四、课时小结
    这节课我们学习了用完全平方公式分解因式。它与平方差公式不同之处是:
    (1)要求多项式有三项。
    (2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负。
    同时,我们还学习了若一个多项式有公因式时,应先提取公因式,再用公式分解因式。
    【作业布置】
    1.解:(1)x2y2-2xy+1=(xy-1)2;
    (2)9-12t+4t2=(3-2t)2;
    (3)y2+y+=(y+)2;
    (4)25m2-80 m +64=(5 m-8)2;
    (5)+xy+y2=(+y)2;
    (6)a2b2-4ab+4=(ab-2)2
    2.解:(1)(x+y)2+6(x+y)+9
    =[(x+y)+3]2
    =(x+y+3)2;
    (2)a2-2a(b+c)+(b+c)2
    =[a-(b+c)]2
    =(a-b-c)2;
    (3)4xy2-4x2y-y3
    =y(4xy-4x2-y2)
    =-y(4x2-4xy+y2)
    =-y(2x-y)2;
    (4)-a+2a2-a3
    =-(a-2a2+a3)
    =-a(1-2a+a2)
    =-a(1-a)2.
    3.解:设两个奇数分别为x、x-2,得
    x2-(x-2)2
    =[x+(x-2)][x-(x-2)]
    =(x+x-2)(x-x+2)
    =2(2x-2)
    =4(x-1)
    因为x为奇数,所以x-1为偶数,因此4(x-1)能被8整除。
    4.活动与探究
    写出一个三项式,再把它分解因式(要求三项式含有字母a和b,分数、次数不限,并能先用提公因式法,再用公式法分解因式。
    分析:本题属于答案不固定的开放性试题,所构造的多项式同时具备条件:①含字母a和b;②三项式;③可提公因式后,再用公式法分解。
    参考答案:
    4a3b-4a2b2+ab3
    =ab(4a2-4ab+b2)
    =ab(2a-b)2
    【板书设计】
    运用公式法(二)
    一、1.推导用完全平方公式分解因式的公式以及公式的特点
    2.例题讲解
    例1、例2
    二、课堂练习
    1.随堂练习
    2.补充练习(投影片§2.3.2 B)
    三、课时小结
    四、作业布置
    参考练习
    把下列各式分解因式
    1.-4xy-4x2-y2;
    2.3ab2+6a2b+3a3;
    3.(s+t)2-10(s+t)+25;
    4.0.25a2b2-abc+c2;
    5.x2y-6xy+9y;
    6.2x3y2-16x2y+32x;
    7.16x5+8x3y2+xy4
    参考答案:
    解:1.-4xy-4x2-y2
    =-(4x2+4xy+y2)=-(2x+y)2;
    2.3ab2+6a2b+3a3=3a(b2+2ab+a2)=3a(a+b)2;
    3.(s+t)2-10(s+t)+25=[(s+t)-5]2=(s+t-5)2;
    4.0.25a2b2-abc+c2=(0.5ab-c)2;
    5.x2y-6xy+9y=y(x2-6x+9)=y(x-3)2;
    6.2x3y2-16x2y+32x=2x(x2y2-8xy+16)=2x(xy-4)2;
    7.16x5+8x3y2+xy4=x(16x4+8x2y2+y4)=x(4x2+y2)2.
    【第六课时】
    回顾与思考
    【教学目标】
    一、教学知识点
    1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式。
    2.熟悉本章的知识结构图。
    二、能力训练要求
    通过知识结构图的教学,培养学生归纳总结能力,在例题的教学过程中培养学生分析问题和解决问题的能力。
    三、情感与价值观要求
    通过因式分解综合练习,提高学生观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识。
    【教学重点】
    复习综合应用提公因式法,运用公式法分解因式。
    【教学难点】
    利用分解因式进行计算及讨论。
    【教学方法】
    引导学生自觉进行归纳总结。
    【教学准备】
    投影片三张
    【教学过程】
    一、创设问题情境,引入新课
    [师]前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习。今天,我们来综合总结一下。
    二、新课讲解
    (一)讨论推导本章知识结构图
    [师]请大家先回忆一下我们这一章所学的内容有哪些?
    [生](1)有因式分解的意义,提公因式法和运用公式法的概念。
    (2)分解因式与整式乘法的关系。
    (3)分解因式的方法。
    [师]很好。请大家互相讨论,能否把本章的知识结构图绘出来呢?(若学生有困难,教师可给予帮助)
    [生]
    (二)重点知识讲解
    [师]下面请大家把重点知识回顾一下。
    1.举例说明什么是分解因式。
    [生]如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2)
    把多项式15x3y2+5x2y-20x2y3分解成为因式5x2y与3xy+1-4y2的乘积的形式,就是把多项式15x3y2+5x2y-20x2y3分解因式。
    [师]学习因式分解的概念应注意以下几点:
    (1)因式分解是一种恒等变形,即变形前后的两式恒等。
    (2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止。
    2.分解因式与整式乘法有什么关系?
    [生]分解因式与整式乘法是两种方向相反的变形。
    如:ma+mb+mc=m(a+b+c)
    从左到右是因式分解,从右到左是整式乘法。
    3.分解因式常用的方法有哪些?
    [生]提公因式法和运用公式法。可以分别用式子表示为:
    ma+mb+mc=m(a+b+c)
    a2-b2=(a+b)(a-b)
    a2±2ab+b2=(a±b)2
    4.例题讲解
    [例1]下列各式的变形中,哪些是因式分解?哪些不是?说明理由。
    (1)x2+3x+4=(x+2)(x+1)+2
    (2)6x2y3=3xy·2xy2
    (3)(3x-2)(2x+1)=6x2-x-2
    (4)4ab+2ac=2a(2b+c)
    [师]分析:解答本题的依据是因式分解的定义,即把一个多项式化成几个整式的积的形式是因式分解,否则不是。
    [生]解:(1)不是因式分解,因为右边的运算中还有加法。
    (2)不是因式分解,因为6x2y3不是多项式而是单项式,其本身就是积的形式,所以不需要再因式分解。
    (3)不是因式分解,而是整式乘法。
    (4)是因式分解。
    [例2]将下列各式分解因式。
    (1)8a4b3-4a3b4+2a2b5;
    (2)-9ab+18a2b2-27a3b3;
    (3)-x2;
    (4)9(x+y)2-4(x-y)2;
    (5)x4-25x2y2;
    (6)4x2-20xy+25y2;
    (7)(a+b)2+10c(a+b)+25c2.
    解:(1)8a4b3-4a3b4+2a2b5
    =2a2b3(4a2-2ab+b2);
    (2)-9ab+18a2b2-27a3b3
    =-(9ab-18a2b2+27a3b3)
    =-9ab(1-2ab+3a2b2);
    (3)-x2=()2-(x)2
    =(+ x)(-x);
    (4)9(x+y)2-4(x-y)2
    =[3(x+y)]2-[2(x-y)]2
    =[3(x+y)+2(x-y)][3(x+y)-2(x-y)]
    =(3x+3y+2x-2y)(3x+3y-2x+2y)
    =(5x+y)(x+5y);
    (5)x4-25x2y2=x2(x2-25y2)
    =x2(x+5y)(x-5y);
    (6)4x2-20xy+25y2
    =(2x)2-2·2x·5y+(5y)2
    =(2x-5y)2;
    (7)(a+b)2+10c(a+b)+25c2
    =(a+b)2+2·(a+b)·5c+(5c)2
    =[(a+b)+5c]2=(a+b+5c)2
    [例3]把下列各式分解因式:
    (1)x7y3-x3y3;
    (2)16x4-72x2y2+81y4;
    解:(1)x7y3-x3y3
    =x3y3(x4-1)
    =x3y3(x2+1)(x2-1)
    =x3y3(x2+1)(x+1)(x-1)
    (2)16x4-72x2y2+81y4
    =(4x2)2-2·4x2·9y2+(9y2)2
    =(4x2-9y2)2
    =[(2x+3y)(2x-3y)]2
    =(2x+3y)2(2x-3y)2.
    [师]从上面的例题中,大家能否总结一下分解因式的步骤呢?
    [生]可以。
    分解因式的一般步骤为:
    (1)若多项式各项有公因式,则先提取公因式。
    (2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式。
    (3)每一个多项式都要分解到不能再分解为止。
    三、课堂练习
    1.把下列各式分解因式
    (1)16a2-9b2;
    (2)(x2+4)2-(x+3)2;
    (3)-4a2-9b2+12ab;
    (4)(x+y)2+25-10(x+y)
    解:(1)16a2-9b2=(4a)2-(3b)2
    =(4a+3b)(4a-3b);
    (2)(x2+4)2-(x+3)2
    =[(x2+4)+(x+3)][(x2+4)-(x+3)]
    =(x2+4+x+3)(x2+4-x-3)
    =(x2+x+7)(x2-x+1);
    (3)-4a2-9b2+12ab
    =-(4a2+9b2-12ab)
    =-[(2a)2-2·2a·3b+(3b)2]
    =-(2a-3b)2;
    (4)(x+y)2+25-10(x+y)
    =(x+y)2-2·(x+y)·5+52
    =(x+y-5)2
    2.利用因式分解进行计算
    (1)9x2+12xy+4y2,其中x=,y=-;
    (2)()2-()2,其中a=-,b=2.
    解:(1)9x2+12xy+4y2
    =(3x)2+2·3x·2y+(2y)2
    =(3x+2y)2
    当x=,y=-时
    原式=[3×+2×(-)]2
    =(4-1)2
    =32=9
    (2)()2-()2
    =(+ )(-)
    =ab
    当a=-,b=2时
    原式=-×2=-。
    四、课时小结
    1.师生共同回顾,总结因式分解的意义,因式分解的方法及一般步骤,其中要特别指出:必须使每一个因式都不能再进行因式分解。
    2.利用因式分解简化某些计算。
    【作业布置】
    活动与探究
    求满足4x2-9y2=31的正整数解。
    分析:因为4x2-9y2可分解为(2x+3y)(2x-3y)(x、y为正整数),而31为质数。
    所以有或
    解:∵4x2-9y2=31
    ∴(2x+3y)(2x-3y)=1×31
    ∴或
    解得或
    因所求x、y为正整数,所以只取x=8,y=5.
    【板书设计】
    回顾与思考
    一、1.讨论推导本章知识结构图
    2.重点知识讲解
    (1)举例说明什么是因式分解。
    (2)分解因式与整式乘法有什么关系?
    (3)分解因式常用的方法有哪些?
    (4)例题讲解
    例1、例2、例3
    (5)分解因式的一般步骤
    二、课堂练习
    三、课时小结
    四、作业布置

    相关教案

    初中北师大版1 因式分解教案:

    这是一份初中北师大版1 因式分解教案,共5页。教案主要包含了知识讲解,方法总结,即学即练,探索思路,题后总结等内容,欢迎下载使用。

    北师大版八年级下册1 因式分解教案:

    这是一份北师大版八年级下册1 因式分解教案,共2页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。

    北师大版八年级下册1 因式分解教案:

    这是一份北师大版八年级下册1 因式分解教案,共6页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map