所属成套资源:(全国通用)2022年中考数学一轮复习高频考点精讲精练原卷版+解析版
(全国通用)2022年中考数学一轮复习高频考点精讲精练 专题25 图形的相似(原卷版+解析版)学案
展开
这是一份(全国通用)2022年中考数学一轮复习高频考点精讲精练 专题25 图形的相似(原卷版+解析版)学案,文件包含全国通用2022年中考数学一轮复习高频考点精讲精练专题25图形的相似解析版doc、全国通用2022年中考数学一轮复习高频考点精讲精练专题25图形的相似原卷版doc等2份学案配套教学资源,其中学案共26页, 欢迎下载使用。
【高频考点精讲】
1、三条平行线截两条直线,所得的对应线段成比例。
2、推论:
(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
(2)如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
(3)平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得三角形的三边与原三角形的三边对应成比例。
【热点题型精练】
1.(2021•哈尔滨中考真题)如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为( )
A.3B.4C.5D.6
解:∵DE∥BC,
∴,
∵AD=2,BD=3,AC=10,
∴,
∴AE=4.
答案:B.
2.(2021•淄博中考真题)如图,AB,CD相交于点E,且AC∥EF∥DB,点C,F,B在同一条直线上.已知AC=p,EF=r,DB=q,则p,q,r之间满足的数量关系式是( )
A.+=B.+=C.+=D.+=
解:∵AC∥EF,
∴,
∵EF∥DB,
∴,
∴=+===1,即=1,
∴.
答案:C.
3.(2021•郴州中考真题)如图是一架梯子的示意图,其中AA1∥BB1∥CC1∥DD1,且AB=BC=CD.为使其更稳固,在A,D1间加绑一条安全绳(线段AD1)量得AE=0.4m,则AD1= 1.2 m.
解:∵BB1∥CC1,
∴=,
∵AB=BC,
∴AE=EF,
同理可得:AE=EF=FD1,
∵AE=0.4m,
∴AD1=0.4×3=1.2(m),
答案:1.2.
4.(2021•连云港中考真题)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则= .
解:如图,∵BE是△ABC的中线,
∴点E是AC的中点,
∴=,
过点E作EG∥DC交AD于G,
∴∠AGE=∠ADC,∠AEG=∠C,
∴△AGE∽△ADC,
∴,
∴DC=2GE,
∵BF=3FE,
∴,
∵GE∥BD,
∴∠GEF=∠FBD,∠EGF=∠BDF,
∴△GFE∽△DFB,
∴==,
∴,
∴=,
答案:.
5.(2021•上海中考真题)如图所示,已知在梯形ABCD中,AD∥BC,=,则= .
解:过D作DM⊥BC于M,过B作BN⊥AD于N,如图:
∵AD∥BC,DM⊥BC,BN⊥AD,
∴四边形BMDN是矩形,DM=BN,
∵=,
∴=,
∴=,
∵AD∥BC,
∴==,
∴=,
∴=,
答案:.
6.(2020•无锡中考真题)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为 .
解:如图,过点D作DF∥AE,
则==,
∵=,
∴DF=2EC,
∴DO=2OC,
∴DO=DC,
∴S△ADO=S△ADC,S△BDO=S△BDC,
∴S△ABO=S△ABC,
∵∠ACB=90°,
∴C在以AB为直径的圆上,设圆心为G,
当CG⊥AB时,△ABC的面积最大为:4×2=4,
此时△ABO的面积最大为:×4=.
答案:.
考点02 相似三角形的判定与性质
【高频考点精讲】
1、相似三角形的判定
(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。(两角对应相等,两个三角形相似)
(2)如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。(两边对应成比例且夹角相等,两个三角形相似)
(3)如果两个三角形的三组对应边成比例,那么这两个三角形相似。(三边对应成比例,两个三角形相似)
(4)两三角形三边对应平行,则两三角形相似。(三边对应平行,两个三角形相似)
(5)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。(斜边与直角边对应成比例,两个直角三角形相似)
2、相似三角形的性质
(1)相似三角形对应角相等,对应边成正比例。
(2)相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径)的比等于相似比。
(3)相似三角形周长的比等于相似比。
(4)相似三角形面积的比等于相似比的平方。
【热点题型精练】
7.(2021•大庆中考真题)如图,F是线段CD上除端点外的一点,将△ADF绕正方形ABCD的顶点A顺时针旋转90°,得到△ABE.连接EF交AB于点H.下列结论正确的是( )
A.∠EAF=120°B.AE:EF=1:
C.AF2=EH•EFD.EB:AD=EH:HF
解:∵△ADF绕正方形ABCD的顶点A顺时针旋转90°,得到△ABE,
∴△ABE≌△ADF,
∴∠EAB=∠DAF,
∴∠EAF=∠BAE+∠FAB=90°=∠DAF+∠FAB=90°,
故A不正确;
∵∠EAF=90°,AE=AF,
∴△AEF是等腰直角三角形,
∴EF=AE,
∴AE:EF=1:,
故B不正确;
若AF2=EH•EF成立,
∵AE:EF=1:,
∴EH=AF,
∴EH=EF,
即H是EF的中点,H不一定是EF的中点,
故C不正确;
∵AB∥CD,
∴EB:BC=EH:HF,
∵BC=AD,
∴EB:AD=EH:HF,
故D正确;
答案:D.
8.(2021•绵阳中考真题)如图,在△ACD中,AD=6,BC=5,AC2=AB(AB+BC),且△DAB∽△DCA,若AD=3AP,点Q是线段AB上的动点,则PQ的最小值是( )
A.B.C.D.
解:∵△DAB∽△DCA,
∴=,
∴=,
解得:BD=4(负值舍去),
∵△DAB∽△DCA,
∴,
∴AC=,
∵AC2=AB(AB+BC),
∴(AB)2=AB(AB+BC),
∴AB=4,
∴AB=BD=4,
过B作BH⊥AD于H,
∴AH=AD=3,
∴BH===,
∵AD=3AP,AD=6,
∴AP=2,
当PQ⊥AB时,PQ的值最小,
∵∠AQP=∠AHB=90°,∠PAQ=∠BAH,
∴△APQ∽△ABH,
∴,
∴=,
∴PQ=,
答案:A.
9.(2021•锦州中考真题)如图,△ABC内接于⊙O,AB为⊙O的直径,D为⊙O上一点(位于AB下方),CD交AB于点E,若∠BDC=45°,BC=6,CE=2DE,则CE的长为( )
A.2B.4C.3D.4
解:连接CO,过点D作DG⊥AB于点G,连接AD,
∵∠BDC=45°,
∴∠CAO=∠CDB=45°,
∵AB为⊙O的直径,
∴∠ACB=∠ADB=90°,
∴∠CAB=∠CBA=45°,
∵BC=6,
∴AB=BC=12,
∵OA=OB,
∴CO⊥AB,
∴∠COA=∠DGE=90°,
∵∠DEG=∠CEO,
∴△DGE∽△COE,
∴=,
∵CE=2DE,
设GE=x,则OE=2x,DG=3,
∴AG=6﹣3x,BG=6+3x,
∵∠ADB=∠AGB=90°,
∠DAG=∠BAD,
∴△AGD∽△ADB,
∴DG2=AG•BG,
∴9=(6﹣3x)(6+3x),
∵x>0,
∴x=,
∴OE=2,
在Rt△OCE中,由勾股定理得:
CE=,
答案:D.
10.(2021•内江中考真题)如图,在边长为a的等边△ABC中,分别取△ABC三边的中点A1,B1,C1,得△A1B1C1;再分别取ΔA1B1C1三边的中点A2,B2,C2,得△A2B2C2;这样依次下去…,经过第2021次操作后得△A2021B2021C2021,则△A2021B2021C2021的面积为( )
A.B.C.D.
解:∵点A1,B1分别为BC,AC的中点,
∴AB=2A1B1,
∵点A2,B2分别为B1C1,A2C2的中点,
∴A1B1=2A2B2,
∴A2B2=()2•a,
…
∴AnBn=()n•a,
∴A2021B2021=()2021•a
∴△A2021B2021C2021的面积=•[()2021•a]2=,
答案:D.
11.(2021•益阳中考真题)如图,Rt△ABC中,∠BAC=90°,tan∠ABC=,将△ABC绕A点顺时针方向旋转角α(0°<α<90°)得到△AB′C′,连接BB′,CC′,则△CAC′与△BAB′的面积之比等于 9:4 .
解:由旋转的性质可知,∠BAC=∠B′AC′,
∴∠BAB′=∠CAC′,
∵AB=AB′,AC=AC′,
∴=,
∴△ACC′∽△ABB′,
∴=()2,
∵∠CAB=90°,
∴tan∠ABC==,
∴=()2=.
答案:9:4.
12.(2021•山西中考真题)如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为 4 .
解:如图,取AD中点F,连接EF,过点D作DG⊥EF于G,DH⊥BE于H,
设BD=a,
∴AD=3BD=3a,AB=4a,
∵点E为CD中点,点F为AD中点,CD=6,
∴DF=a,EF∥AC,DE=3,
∴∠FED=∠ACD=45°,
∵∠BED=45°,
∴∠FED=∠BED,∠FEB=90°,
∵DG⊥EF,DH⊥BE,
∴四边形EHDG是矩形,DG=DH,
∴四边形DGEH是正方形,
∴DE=DG=3,DH∥EF,
∴DG=DH=3,
∵DH∥EF,
∴∠BDH=∠DFG,
∴△BDH∽△DFG,
∴,
∴=,
∴BH=2,
∴BD===,
∴AB=4,
答案:4.
13.(2021•烟台中考真题)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为 3 米.
解:由题意知:AB∥CD,
则∠BAE=∠C,∠B=∠CDE,
∴△ABE∽△CDE,
∴,
∴,
∴CD=3米,
答案:3.
14.(2021•青岛中考真题)已知正方形ABCD的边长为3,E为CD上一点,连接AE并延长,交BC的延长线于点F,过点D作DG⊥AF,交AF于点H,交BF于点G,N为EF的中点,M为BD上一动点,分别连接MC,MN.若,则MN+MC的最小值为 2 .
解:∵四边形ABCD是正方形,
∴A点与C点关于BD对称,
∴CM=AM,
∴MN+CM=MN+AM≥AN,
∴当A、M、N三点共线时,MN+CM的值最小,
∵AD∥CF,
∴∠DAE=∠F,
∵∠DAE+∠DEH=90°,
∵DG⊥AF,
∴∠CDG+∠DEH=90°,
∴∠DAE=∠CDG,
∴∠CDG=∠F,
∴△DCG∽△FCE,
∵,
∴=,
∵正方形边长为3,
∴CF=6,
∵AD∥CF,
∴==,
∴DE=1,CE=2,
在Rt△CEF中,EF2=CE2+CF2,
∴EF==2,
∵N是EF的中点,
∴EN=,
在Rt△ADE中,EA2=AD2+DE2,
∴AE==,
∴AN=2,
∴MN+MC的最小值为2,
答案:2.
考点03 位似变换
【高频考点精讲】
1、位似图形的概念:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么两个图形叫做位似图形,这个点叫做位似中心。
2、位似图形与坐标:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k或﹣k。
【热点题型精练】
15.(2021•沈阳中考真题)如图,△ABC与△A1B1C1位似,位似中心是点O,若OA:OA1=1:2,则△ABC与△A1B1C1的周长比是( )
A.1:2B.1:3C.1:4D.1:
解:∵△ABC与△A1B1C1位似,
∴△ABC∽△A1B1C1,AC∥A1C1,
∴△AOC∽△A1OC1,
∴==,
∴△ABC与△A1B1C1的周长比为1:2,
答案:A.
16.(2021•东营中考真题)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是( )
A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2
解:设点B′的横坐标为x,
则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,
∵△ABC放大到原来的2倍得到△A′B′C,
∴2(a﹣1)=﹣x+1,
解得:x=﹣2a+3,
答案:A.
17.(2021•温州中考真题)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为( )
A.8B.9C.10D.15
解:∵图形甲与图形乙是位似图形,位似比为2:3,AB=6,
∴=,即=,
解得,A′B′=9,
答案:B.
18.(2021•重庆中考真题)如图,在平面直角坐标系中,将△OAB以原点O为位似中心放大后得到△OCD,若B(0,1),D(0,3),则△OAB与△OCD的相似比是( )
A.2:1B.1:2C.3:1D.1:3
解:∵B(0,1),D(0,3),
∴OB=1,OD=3,
∵△OAB以原点O为位似中心放大后得到△OCD,
∴△OAB与△OCD的相似比是OB:OD=1:3,
答案:D.
19.(2021•黔东南州中考真题)已知在平面直角坐标系中,△AOB的顶点分别为点A(2,1)、点B(2,0)、点O(0,0),若以原点O为位似中心,相似比为2,将△AOB放大,则点A的对应点的坐标为 (4,2)或(﹣4,﹣2) .
解:如图,观察图象可知,点A的对应点的坐标为(4,2)或(﹣4,﹣2).
答案:(4,2)或(﹣4,﹣2).
20.(2021•嘉兴中考真题)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是 (4,2) .
解:如图,
点G(4,2)即为所求的位似中心.
答案:(4,2).
21.(2021•黔西南州中考真题)如图,△A′B′C′与△ABC是位似图形,点O为位似中心,若OA′=A′A,则△A′B′C′与△ABC的面积比为 1:4 .
解:∵OA′=A′A,
∴=,
∵△A′B′C′与△ABC是位似图形,
∴△A′B′C′∽△ABC,
∴△A′B′C′与△ABC的面积比=()2=,
答案:1:4.
22.(2020•郴州中考真题)在平面直角坐标系中,将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,已知A(2,3),则点A1的坐标是 (,2) .
解:∵将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,A(2,3),
∴点A1的坐标是:(×2,×3),
即A1(,2).
答案:(,2)
相关学案
这是一份(全国通用)2022年中考数学一轮复习高频考点精讲精练 专题06 分式(原卷版+解析版)学案,文件包含全国通用2022年中考数学一轮复习高频考点精讲精练专题06分式解析版docx、全国通用2022年中考数学一轮复习高频考点精讲精练专题06分式原卷版docx等2份学案配套教学资源,其中学案共11页, 欢迎下载使用。
这是一份(全国通用)2022年中考数学一轮复习高频考点精讲精练 专题04 整式运算(原卷版+解析版)学案,文件包含全国通用2022年中考数学一轮复习高频考点精讲精练专题04整式运算解析版docx、全国通用2022年中考数学一轮复习高频考点精讲精练专题04整式运算原卷版docx等2份学案配套教学资源,其中学案共15页, 欢迎下载使用。
这是一份(全国通用)2022年中考数学一轮复习高频考点精讲精练 专题02 实数运算(原卷版+解析版)学案,文件包含全国通用2022年中考数学一轮复习高频考点精讲精练专题02实数运算解析版docx、全国通用2022年中考数学一轮复习高频考点精讲精练专题02实数运算原卷版docx等2份学案配套教学资源,其中学案共9页, 欢迎下载使用。