终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    类型3题型2与切线有关的证明与计算-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      题型2与切线有关的证明与计算(教师版).doc
    • 学生
      题型2与切线有关的证明与计算(学生版).doc
    题型2与切线有关的证明与计算(教师版)第1页
    题型2与切线有关的证明与计算(教师版)第2页
    题型2与切线有关的证明与计算(教师版)第3页
    题型2与切线有关的证明与计算(学生版)第1页
    题型2与切线有关的证明与计算(学生版)第2页
    题型2与切线有关的证明与计算(学生版)第3页
    还剩10页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    类型3题型2与切线有关的证明与计算-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版)

    展开

    这是一份类型3题型2与切线有关的证明与计算-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型2与切线有关的证明与计算教师版doc、题型2与切线有关的证明与计算学生版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
    类型二与切线有关的证明与计算典例1如图,AB是半圆O的直径,CD是半圆O上不同于AB的两点,ADBCACBD相交于点FBE是半圆O所在圆的切线,与AC的延长线相交于点E(1)求证:CBA≌△DAB(2)若BEBF,求证:AC平分DAB【分析】(1)根据圆周角定理得到ACBADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到EBFE,根据切线的性质得到ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解答】(1)证明:AB是半圆O的直径,∴∠ACBADB=90°在RtCBA与RtDAB中,RtCBARtDABHL);(2)解:BEBF,由(1)知BCEF∴∠EBFEBE是半圆O所在圆的切线,∴∠ABE=90°∴∠E+BAE=90°由(1)知D=90°∴∠DAF+AFD=90°∵∠AFDBFE∴∠AFDE∴∠DAF=90°﹣∠AFDBAF=90°﹣∠E∴∠DAFBAFAC平分DAB【点评】本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.典例2如图,的直径,延长线上一点,的切线,为切点,于点,交于点(1)求证:(2)若,求的长.答案(1)详见解析;(2)2【解析】【分析】(1)连接OD,根据圆周角定理得到ADB=90°,根据平行线的性质得到AOF=B,根据切线的性质得到CDO=90°,等量代换即可得到结论;(2)根据三角形中位线定理得到OE=BD=×8=4,设OD=x,OC=3x,根据相似三角形的性质即可得到结论.【详解】解:(1)连接OD,AB为O的直径,∴∠ADB=90°ADBD,OFAD,OFBD,∴∠AOF=B,CD是O的切线,D为切点,∴∠CDO=90°∴∠CDA+ADO=ADO+BDO=90°∴∠CDA=BDO,OD=OB,∴∠ODB=B,∴∠AOF=ADC;(2)OFBD,AO=OB,AE=DE,OE=BD=×8=4,sinC=设OD=x,OC=3x,OB=x,CB=4x,OFBD,∴△COF∽△CBD,OF=6,EF=OFOE=64=2.【点睛】本题考查了切线的性质,相似三角形的判定和性质,三角形的中位线定理,平行线的判定和性质,正确的作出辅助线是解题的关键.典例3如图,相切于点于点的延长线交于点上不与重合的点,(1)求的大小;(2)若的半径为3,点的延长线上,且,求证:相切.答案(1)60°;(2)详见解析【解析】【分析】(1)连接OB,在RtAOB中由求出A=30°,进而求出AOB=60°BOD=120°,再由同弧所对的圆周角等于圆心角的一半可以求出BED的值;(2)连接OF,在RtOBF中,由可以求出BOF=60°,进而得到FOD=60°,再证明FOB≌△FOD,得到ODF=OBF=90°【详解】解:(1)连接相切于点,则由同弧所对的圆周角等于圆心角的一半可知:故答案为:(2)连接由(1)得中,又点上,故相切.【点睛】本题考查圆的有关性质、直线与圆的位置关系、特殊角的三角函数值、解直角三角形、全等三角形的判定和性质,熟练掌握其性质是解决此类题的关键.典例4如图,ABO的直径,点CO上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E(1)求证:AE=AB(2)若AB=10,BC=6,求CD的长.答案(1)见解析;(2)【解析】【分析】(1)连接OC,由同旁内角互补得出AD//OC,可得OCB=E,即可推出ABE=E,AE=AB.(2)连接AC,由勾股定理求出AC,由EDC∽△ECA得出相似比,求出CD即可.【详解】(1)证明:连接OCCDO相切于COCCDCDAEOC//AE∴∠OCB=EOC=OB∴∠ABE=OCB∴∠ABE=EAE=AB(2)连接ACABO的直径∴∠ACB=90°AB=AEACBEEC=BC=6∵∠DEC=CEA, EDC=ECA∴△EDC∽△ECA【点睛】本题考查圆与三角形的综合性质及相似的证明和性质,关键在于合理作出辅助线将已知条件转换求解.典例5如图,ABO的直径,CDO上的两个点,,连接AD,过点DDEACAC的延长线于点E(1)求证:DEO的切线.(2)若直径AB=6,求AD的长.【分析】(1)连接OD,根据已知条件得到BOD180°=60°,根据等腰三角形的性质得到ADODAB=30°,得到EDA=60°,求得ODDE,于是得到结论;(2)连接BD,根据圆周角定理得到ADB=90°,解直角三角形即可得到结论.【解答】(1)证明:连接OD∴∠BOD180°=60°∴∠EADDABBOD=30°OAOD∴∠ADODAB=30°DEAC∴∠E=90°∴∠EAD+EDA=90°∴∠EDA=60°∴∠EDOEDA+ADO=90°ODDEDEO的切线;(2)解:连接BDABO的直径,∴∠ADB=90°∵∠DAB=30°AB=6,BDAB=3,AD=3【点评】本题考查了切线的判定和性质,勾股定理,圆周角定理,正确的作出辅助线是解题的关键. 典例6如图,在ABC中,AB=AC,点D在BC上,BD=DC,过点D作DEAC,垂足为E,O经过A,B,D三点.(1)求证:AB是O的直径;(2)判断DE与O的位置关系,并加以证明;(3)若O的半径为3,BAC=60°,求DE的长.分析】:(1)连接AD,证ADBC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长.答案】:(1)连接AD,AB=AC,BD=DC,ADBC,∴∠ADB=90°AB为圆O的直径(2)DE与圆O相切,证明:连接OD,O,D分别为AB,BC的中点,OD为ABC的中位线,ODAC,DEAC,DEOD,OD为圆的半径,DE与圆O相切(3)AB=AC,BAC=60°∴△ABC为等边三角形,AB=AC=BC=6,连接BF,AB为圆O的直径,∴∠AFB=DEC=90°AF=CF=3,DEBF,D为BC的中点,E为CF的中点,即DE为BCF中位线,在RtABF中,AB=6,AF=3,根据勾股定理得BF==3,则DE=BF=典例7如图,ABC内接于O,BD为O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且A=EBC.(1)求证:BE是O的切线;(2)已知CGEB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=,DF=2BF,求AH的值.分析】:(1)证EBD=90°即可;(2)由ABC∽△CBG得,可求出BC,再由BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC.答案】:(1)连接CD,BD是直径,∴∠BCD=90°,即D+CBD=90°∵∠A=D,A=EBC,∴∠CBD+EBC=90°BEBD,BE是O切线(2)CGEB,∴∠BCG=EBC,∴∠A=BCG,又∵∠CBG=ABC,∴△ABC∽△CBG,,即BC2=BG·BA=48,BC=4CGEB,CFBD,∴△BFC∽△BCD,BC2=BF·BD,DF=2BF,BF=4,在RtBCF中,CF==4CG=CF+FG=5,在RtBFG中,BG==3BG·BA=48,BA=8AG=5CG=AG,∴∠A=ACG=BCG,CFH=CFB=90°∴∠CHF=CBF,CH=CB=4∵△ABC∽△CBG,AC=AH=AC-CH=典例8如图,四边形ABCD内接于O,对角线AC为O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求CDE的度数;(2)求证:DF是O的切线;(3)若AC=2DE,求tanABD的值.答案】:(1)对角线AC为O的直径,∴∠ADC=90°∴∠EDC=90°(2)连接DO,∵∠EDC=90°,F是EC的中点,DF=FC,∴∠FDC=FCD,OD=OC,∴∠OCD=ODC,∵∠OCF=90°∴∠ODF=ODC+FDC=OCD+DCF=OCF=90°DF是O的切线(3)∵∠E+DCE=90°DCA+DCE=90°∴∠DCA=E,又∵∠ADC=CDE=90°∴△CDE∽△ADC,DC2=AD·DE.设DE=x,则AC=2x,AC2-AD2=DC2=AD·DE,即(2x)2-AD2=AD·x,整理得AD2+AD·x-20x2=0,解得AD=4x或AD=-5x(舍去),则DC==2x,故tanABD=tanACD==2典例9如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD,AC分别交于点E,F,且ACB=DCE.(1)判断直线CE与O的位置关系,并证明你的结论;(2)若tanACB=,BC=2,求O的半径.答案】:(1)直线CE与O相切. 理由如下:四边形ABCD是矩形,BCAD,∴∠ACB=DAC,又∵∠ACB=DCE,∴∠DAC=DCE,连接OE,有OA=OE,则DAC=AEO=DCE.∵∠DCE+DEC=90°∴∠AEO+DEC=90°∴∠OEC=90°,即OECE.又OE是O的半径,直线CE与O相切 (2)tanACB=,BC=2,AB=BC·tanACB=AC=.又∵∠ACB=DCE,tanDCE=tanACB=DE=DC·tanDCE=1.在RtCDE中,CE=,设O的半径为r,则在RtCOE中,CO2=OE2+CE2,即(-r)2=r2+3,解得r=                 典例10如图,已知AB为O的直径,AC为O的切线,OC交O于点D,BD的延长线交AC于点E.(1)求证:1=CAD;(2)若AE=EC=2,求O的半径.答案】:(1)AB为O的直径,∴∠ADB=90°∴∠ADO+BDO=90°AC为O的切线,OAAC,∴∠OAD+CAD=90°OA=OD,∴∠OAD=ODA,∵∠1=BDO,∴∠1=CAD(2)∵∠1=CAD,C=C,∴△CAD∽△CDE,CDCA=CECD,CD2=CA·CE,AE=EC=2,AC=AE+EC=4,CD=2,设O的半径为x,则OA=OD=x,在RtAOC中,OA2+AC2=OC2x2+42=(2+x)2,解得x=∴⊙O的半径为 典例11如图,已知O是ABC的外接圆,AD是O的直径,且BD=BC,延长AD到E,且有EBD=CAB.(1)求证:BE是O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.答案】:(1)连接OB,BD=BC,∴∠CAB=BAD,∵∠EBD=CAB,∴∠BAD=EBD,AD是O的直径,∴∠ABD=90°,OA=OB,∴∠BAD=ABO,∴∠EBD=ABO,∴∠OBE=EBD+OBD=ABO+OBD=ABD=90°点B在O上,BE是O的切线(2)设圆的半径为R,连接CD,AD为O的直径,∴∠ACD=90°BC=BD,OBCD,OBAC,OA=OD,OF=AC=四边形ACBD是圆内接四边形,∴∠BDE=ACB,∵∠DBE=CAB,∴△DBE∽△CAB,DE=∵∠OBE=OFD=90°DFBE,R>0,R=3,AB=BE= 典例12如图,CD是O的直径,AB是O的弦,ABCD,垂足为G,OGOC=35,AB=8.(1)求O的半径;(2)点E为圆上一点,ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.答案】:(1)连接AO,CD为O的直径,ABCD,AB=8,AG=4,OGOC=35,O的半径为5k,则OG=3k,(3k)2+42=(5k)2,解得k=1或k=-1(舍去),5k=5,即O的半径是5(2)将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,DCM=30°,S阴影=S弓形CBM,连接OM,则MOD=60°∴∠MOC=120°,过点M作MNCD于点N,MN=MO·sin60°=5×S阴影=S扇形OMC-SOMC×5×,即图中阴影部分的面积是 典例13如图,在RtABC中,ABC=90°,AB=CB,以AB为直径的O交AC于点D,点E是AB边上一点(点E不与点A,B重合),DE的延长线交O于点G,DFDG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GBEF;(3)若AE=1,EB=2,求DG的长.答案】:(1)连接BD,在RtABC中,ABC=90°,AB=BC,∴∠A=C=45°AB为圆O的直径,∴∠ADB=90°,即BDAC,AD=DC=BD=AC,CBD=C=45°∴∠A=FBD,DFDG,∴∠FDG=90°∴∠FDB+BDG=90°,又∵∠EDA+BDG=90°∴∠EDA=FDB,可证AED≌△BFD(ASA),AE=BF(2)连接EF,BG,∵△AED≌△BFD,DE=DF,∵∠EDF=90°∴△EDF是等腰直角三角形,∴∠DEF=45°∵∠G=A=45°∴∠G=DEF,GBEF(3)AE=BF,AE=1,BF=1,在RtEBF中,EBF=90°根据勾股定理得EF2=EB2+BF2EB=2,BF=1,EF=∵△DEF为等腰直角三角形,EDF=90°cosDEF=EF=DE=×∵∠G=A,GEB=AED,∴△GEB∽△AED,,即GE·ED=AE·EB,·GE=2,GE=,则GD=GE+ED= 

    相关试卷

    题型五 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)-中考数学二轮复习讲练测(全国通用):

    这是一份题型五 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练解析版docx、题型五圆的相关证明与计算类型二与切线有关的证明与计算专题训练原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    中考数学二轮复习重难点复习题型05 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)(2份打包,原卷版+解析版):

    这是一份中考数学二轮复习重难点复习题型05 圆的相关证明与计算 类型二 与切线有关的证明与计算(专题训练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习重难点复习题型05圆的相关证明与计算类型二与切线有关的证明与计算专题训练解析版doc、中考数学二轮复习重难点复习题型05圆的相关证明与计算类型二与切线有关的证明与计算专题训练原卷版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    (全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 与圆切线有关的证明与计算(原卷版+解析版):

    这是一份(全国通用)2022年中考数学命题点及重难题型分类突破练 类型二 与圆切线有关的证明与计算(原卷版+解析版),文件包含全国通用2022年中考数学命题点及重难题型分类突破练类型二与圆切线有关的证明与计算解析版docx、全国通用2022年中考数学命题点及重难题型分类突破练类型二与圆切线有关的证明与计算原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map