所属成套资源:2022年中考数学二轮复习重难题型突破
类型6题型7与面积有关的探究题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版)
展开
这是一份类型6题型7与面积有关的探究题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型7与面积有关的探究题教师版doc、题型7与面积有关的探究题学生版doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
类型七 与面积有关的探究题【典例1】已知,△ABC为直角三角形,∠ACB=90°,点P是射线CB上一点(点P不与点B、C重合),线段AP绕点A顺时针旋转90°得到线段AQ,连接QB交射线AC于点M.(1)如图①,当AC=BC,点P在线段CB上时,线段PB,CM的数量关系是________;(2)如图②,当AC=BC,点P在线段CB的延长线上时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)如图③,若=,点P在线段CB的延长线上,CM=2,AP=13,求△ABP的面积.第1题图 【典例2】如图,将OA= 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP. (1)点B的坐标为;用含t的式子表示点P的坐标为;(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由. 【典例3】如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长. 【典例4】阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边的重心为点,求与的面积.(2)性质探究:如图(二),已知的重心为点,请判断、是否都为定值?如果是,分别求出这两个定值:如果不是,请说明理由.(3)性质应用:如图(三),在正方形中,点是的中点,连接交对角线于点.①若正方形的边长为4,求的长度;②若,求正方形的面积.
相关试卷
这是一份类型6题型8其他探究题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型8其他探究题教师版doc、题型8其他探究题学生版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份类型6题型6与圆有关的探究题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型6与圆有关的探究题教师版doc、题型6与圆有关的探究题学生版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份类型6题型5与平移有关的探究题-2022年中考数学二轮复习重难题型突破试卷(教师版+学生版),文件包含题型5与平移有关的探究题教师版doc、题型5与平移有关的探究题学生版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。