【真题汇编】2022年北京市石景山区中考数学三年高频真题汇总卷(含答案解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若菱形的周长为8,高为2,则菱形的面积为( )
A.2B.4C.8D.16
2、下列命题正确的是
A.零的倒数是零
B.乘积是1的两数互为倒数
C.如果一个数是,那么它的倒数是
D.任何不等于0的数的倒数都大于零
3、下图中能体现∠1一定大于∠2的是( )
A.B.
C.D.
4、已知,,且,则的值为( )
A.1或3B.1或﹣3C.﹣1或﹣3D.﹣1或3
5、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9B.10C.12D.14
6、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.
小张:该工艺品的进价是每个22元;
小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.
经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?
设这种工艺品的销售价每个应降低x元,由题意可列方程为( )
A.(38﹣x)(160+×120)=3640
B.(38﹣x﹣22)(160+120x)=3640
C.(38﹣x﹣22)(160+3x×120)=3640
D.(38﹣x﹣22)(160+×120)=3640
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
7、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( )
A.11.5×108B.1.15×108C.11.5×109D.1.15×109
8、下列一元二次方程有两个相等的实数根的是( )
A.B.
C. D.
9、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )
A.B.133C.200D.400
10、若,则的值是( )
A.B.0C.1D.2022
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
2、若a和b互为相反数,c和d互为倒数,则的值是________________.
3、如图,l1∥l2∥l3,若AB=2,BC=3,AD=1,CF=4,则BE的长为______.
4、某班学生分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了两组,这个班共有多少名学生?若设共有x名学生,可列方程为________.
5、将一张长方形的纸按照如图所示折叠后,点C、D两点分别落在点、处,若EA平分,则_________.
三、解答题(5小题,每小题10分,共计50分)
1、先化简,再求值:a2b-[3ab2-2(-3a2b+ab2)],其中a=1,b=-.
2、二次函数的图象与y轴交于点A,将点A向右平移4个单位长度,得到点B,点B在二次函数的图象上.
(1)求点B的坐标(用含的代数式表示);
(2)二次函数的对称轴是直线 ;
(3)已知点(,),(,),(,)在二次函数的图象上.若,比较,,的大小,并说明理由.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、如图,在等边△ABC中,D、E分别是边AC、BC上的点,且CD=CE,,点C与点F关于BD对称,连接AF、FE,FE交BD于G.
(1)连接DE、DF,则DE、DF之间的数量关系是_______,并证明;
(2)若,用等式表示出段BG、GF、FA三者之间的数量关系,并证明.
4、在△ABC中,∠BAC=90°,P是线段AC上一动点,CQ⊥BP于点Q,D是线段BQ上一点,E是射线CQ上一点,且满足,连接AE,DE.
(1)如图1,当AB=AC时,用等式表示线段DE与AE之间的数量关系,并证明;
(2)如图2,当AC=2AB=6时,用等式表示线段DE与AE之间的数量关系,并证明;
(3)在(2)的条件下,若,AE⊥CQ,直接写出A,D两点之间的距离.
5、如图,一次函数的图象与反比例函数的图象相交于A(1,3),B(3,n)两点,与两坐标轴分别相交于点P,Q,过点B作于点C,连接OA.
(1)求一次函数和反比例函数的解析式;
(2)求四边形ABCO的面积.
-参考答案-
一、单选题
1、B
【分析】
根据周长求出边长,利用菱形的面积公式即可求解.
【详解】
∵菱形的周长为8,
∴边长=2,
∴菱形的面积=2×2=4,
故选:B.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
2、B
【分析】
根据倒数的概念、有理数的大小比较法则判断.
【详解】
解:、零没有倒数,本选项说法错误;
、乘积是1的两数互为倒数,本选项说法正确;
、如果,则没有倒数,本选项说法错误;
、的倒数是,,则任何不等于0的数的倒数都大于零说法错误;
故选:.
【点睛】
本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键.
3、C
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
4、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
5、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
6、D
【分析】
由这种工艺品的销售价每个降低x元,可得出每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x的一元二次方程,此题得解.
【详解】
解:∵这种工艺品的销售价每个降低x元,
∴每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个.
依题意得:(38-x-22)(160+×120)=3640.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
7、D
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:11.5亿=1150000000=1.5×109.
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、B
【分析】
根据一元二次方程根的判别式判断即可.
【详解】
解:、△,
方程有两个不等实数根,不符合题意;
、△,
方程有两个相等实数根,符合题意;
、△,
方程有两个不相等实数根,不符合题意;
、△,
方程没有实数根,不符合题意;
故选:B.
【点睛】
本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.
9、C
【分析】
设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.
【详解】
解:设火车的长度是x米,根据题意得出:=,
解得:x=200,
答:火车的长为200米;
故选择C.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.
10、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
二、填空题
1、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
2、-2020
【分析】
利用相反数,倒数意义求出各自的值,代入原式计算即可得到结果.
【详解】
解:∵a,b互为相反数,c,d互为倒数,
∴a+b=0,cd=1,
则.
故答案为:-2020.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了代数式的求值,有理数的混合运算,相反数,倒数,熟练掌握各自的性质是解本题的关键.
3、
【分析】
由题意知;如图过点作交于点,交于点;有四边形 与四边形均为平行四边形,且有, ,;;可得的值,由可知的值.
【详解】
解:如图过点作交于点,交于点;
四边形 与四边形均为平行四边形
, ,
由题意知
故答案为:.
【点睛】
本题考查了平行线分线段成比例,平行四边形的性质,三角形相似等知识点.解题的关键在于作辅助线将平行线分线段成比例应用于相似三角形中找出线段的关系.
4、
【分析】
设这个班学生共有人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了组,根据此列方程即可.
【详解】
解:设这个班学生共有人,
根据题意得:
故答案为:.
【点睛】
此题考查了由实际问题抽象出一元一次方程,其关键是找出等量关系及表示原来和后来各多少组.
5、120°
【分析】
由折叠的性质,则,由角平分线的定义,得到,然后由邻补角的定义,即可求出答案.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:根据题意,由折叠的性质,则
,
∵EA平分,
∴,
∵,
∴,
∴;
故答案为:120°.
【点睛】
本题考查了折叠的性质,角平分线的定义,邻补角的定义,解题的关键是掌握所学的知识,正确的求出的度数.
三、解答题
1、,
【分析】
先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.
【详解】
解:
,
当,时,原式.
【点睛】
本题主要考查了整式的化简求值,去括号,含乘方的有理数混合计算,熟知相关计算法则是解题的关键.
2、(1)B(4,);(2);(3),见解析
【分析】
(1)根据题意,令,即可求得的坐标,根据平移的性质即可求得点的坐标;
(2)根据题意关于对称轴对称,进而根据的坐标即可求得对称轴;
(3)根据(2)可知对称轴为,进而计算点与对称轴的距离,根据抛物线开口朝下,则点离对称轴越远则函数值越小,据此求解即可
【详解】
解:(1)∵令,
∴,
∴点A的坐标为(0,),
∵将点A向右平移4个单位长度,得到点B,
∴点B的坐标为(4,).
(2) A的坐标为(0,),点B的坐标为(4,)
点都在在二次函数的图象上.即关于对称轴对称
对称轴为
(3)∵对称轴是直线,,
∴点(,),(,)在对称轴的左侧,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
点(,)在对称轴的右侧,
∵,
∴,
∴,
,
∵,
∴.
【点睛】
本题考查了平移的性质,二次函数的对称性,二次函数的性质,熟练掌握二次函数的性质是解题的关键.
3、
(1),证明见解析
(2),证明见解析
【分析】
(1)只要证明是等边三角形,再根据轴对称的性质可得结论;
(2)结论:.连接,延长,交于点,只要证明是等边三角形,即可解决问题;
(1)
解:,
是等边三角形,
,
,
是等边三角形,
,
点与点关于对称,
,
,
故答案为:;
(2)
解:结论:.理由如下:
连接,延长,交于点,
是等边三角形,
,,
点与点关于对称,
,,
,
,
设,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
则,
,
,
,
是等边三角形,
,
,
,且,
,
,
,
.
【点睛】
本题考查等边三角形的性质和判定、全等三角形的判定和性质、轴对称变换,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
4、
(1),理由见解析
(2),理由见解析
(3)
【分析】
(1)连接AD.根据,可得,从而得到,再由,可得,从而得到,进而得到,即可求解;
(2)连接AD.先证明,可得到,从而得到,再由勾股定理,即可求解;
(3)根据题意可先证明四边形ADQE是矩形,可得到AD⊥BP,再由,可得AP=4,再由勾股定理可得,然后根据三角形的面积,即可求解.
(1)
解:
理由:如图,连接AD.
∵,
∴,
∵,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∴,
∵,
∴,
∴,
∴,
∴,即,
∴,
在Rt△DAE中,
∵,
∴;
(2)
解:,
理由:如图,连接AD.
∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,即,
在Rt△DAE中,∵,
∴;
(3)
解: 由(2)得:∠DAE=90°,
∵AE⊥CQ,BP⊥CQ,
∴∠DQE=∠AEQ=90°,PQ∥AE,
∴四边形ADQE是矩形,
∴∠ADP=90°,即AD⊥BP,
∵,AC=6,
∴AP=4,
∵AC=2AB=6,
∴AB=3,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵∠BAC=90°,
∴ ,
∵ ,
∴ .
【点睛】
本题主要考查了相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识,熟练掌握相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识是解题的关键.
5、(1)一次函数的关系式为y=-x+4,反比例函数的关系式为y=;(2)四边形ABCO的面积为.
【分析】
(1)将点A坐标代入,确定反比例函数的关系式,进而确定点B坐标,把点A、B的坐标代入求出一次函数的关系式;
(2)将四边形ABCO的面积转化为S△AOM+S梯形AMCB,利用坐标及面积的计算公式可求出结果.
【详解】
解:(1)A(1,3)代入y=得,m=3,
∴反比例函数的关系式为y=;
把B(3,n)代入y=得,n=1,
∴点B(3,1);
把点A(1,3),B(3,1)代入一次函数y=kx+b得,
,
解得:,
∴一次函数的关系式为:y=-x+4;
答:一次函数的关系式为y=-x+4,反比例函数的关系式为y=;
(2)如图,过点B作BM⊥OP,垂足为M,
由题意可知,OM=1,AM=3,OC=3,MC=OC-OM=3-1=2,
∴S四边形ABCO=S△AOM+S梯形AMCB,
=×1×3+×(1+3)×2
=.
【点睛】
本题考查了一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,将坐标与线段的长的相互转化是计算面积的关键.
【历年真题】中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析): 这是一份【历年真题】中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了的相反数是等内容,欢迎下载使用。
【真题汇编】2022年北京市门头沟区中考数学三年高频真题汇总 卷(Ⅱ)(含详解): 这是一份【真题汇编】2022年北京市门头沟区中考数学三年高频真题汇总 卷(Ⅱ)(含详解),共26页。试卷主要包含了若,,且a,b同号,则的值为,二次函数y=等内容,欢迎下载使用。
【真题汇编】2022年北京市通州区中考数学三年高频真题汇总卷(含答案及详解): 这是一份【真题汇编】2022年北京市通州区中考数学三年高频真题汇总卷(含答案及详解),共28页。试卷主要包含了二次函数y=,若,,且a,b同号,则的值为,下列图形中,是中心对称图形的是等内容,欢迎下载使用。