![2021-2022学年基础强化冀教版七年级数学下册第九章 三角形章节测评试卷(无超纲带解析)01](http://img-preview.51jiaoxi.com/2/3/12767372/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版七年级数学下册第九章 三角形章节测评试卷(无超纲带解析)02](http://img-preview.51jiaoxi.com/2/3/12767372/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化冀教版七年级数学下册第九章 三角形章节测评试卷(无超纲带解析)03](http://img-preview.51jiaoxi.com/2/3/12767372/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第九章 三角形综合与测试当堂检测题
展开冀教版七年级数学下册第九章 三角形章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知△ABC中,BD、CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠BAC=n°(0<n<180),那么∠BOE的度数是( )
A.90°n° B.90°n° C.45°+n° D.180°﹣n°
2、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为( )
A.8 B.7 C.6 D.5
3、下列四个图形中,线段BE是△ABC的高的是( )
A. B.
C. D.
4、若一个三角形的三个外角之比为3:4:5,则该三角形为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
5、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
6、三角形的外角和是( )
A.60° B.90° C.180° D.360°
7、以下长度的三条线段,能组成三角形的是( )
A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
8、以下列长度的各组线段为边,能组成三角形的是( )
A.,, B.,,
C.,, D.,,
9、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.6 B.5 C.4 D.3
10、下列长度的三条线段能组成三角形的是( )
A.3,6,9 B.5,6,8 C.1,2,4 D.5,6,15
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在ABC中,AD⊥BC于点D,BD=CD,若BC=6,AD=4,则图中阴影部分的面积为__________.
2、如图,将绕点B逆时针旋转,得到,若点E恰好落在的延长线上,则__________.
3、如图,A,E,F共线,ABCD,∠A=130°,∠C=125°,则∠CEF等于_______度.
4、如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△BEF=2cm2,则S△ABC=__________.
5、不等边△ABC的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大值是_________
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,AD是△ABC的角平分线,DE∥AC,DE交AB于点E,DF∥AB,DF交AC于点F.求证:DA平分∠EDF.
2、用无刻度的直尺作图,保留作图痕迹.
(1)在图1中,BD是△ABC的角平分线,作△ABC的平分内角∠BCA的角平分线;
(2)在图2中,AD是∠BAC的角平分线,作△ABC的∠BCA相邻的外角的角平分线.
3、如图,在中,为的高,为的角平分线,交于点G,,,求的大小.
4、如图,中,BE为AC边上的高,CD平分,CD、BE相交于点F.若,,求的度数.
5、如图所示,在一副三角板ABC和三角板DEC中,,,∠B=30°,∠DEC=∠DCE=45°.
(1)当AB∥DC时,如图①,的度数为 °;
(2)当与重合时,如图②,判断与的位置关系并说明理由;
(3)如图③,当= °时,AB∥EC;
(4)当AB∥ED时,如图④、图⑤,分别求出的度数.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据BD、CE分别是△ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解.
【详解】
解:∵BD、CE分别是△ABC的角平分线,
∴,,
∴
,
∵,
∴.
故答案选:A.
【点睛】
本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于.三角形的一个外角等于与它不相邻的两个内角之和.
2、C
【解析】
【分析】
根据三角形的中线将三角形的面积分成相等的两部分即可求解.
【详解】
解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,
∴△ABC的面积=3×2=6.
故选:C.
【点睛】
考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.
3、D
【解析】
【分析】
根据三角形高的画法知,过点作边上的高,垂足为,其中线段是的高,再结合图形进行判断.
【详解】
解:线段是的高的图是选项.
故选:D.
【点睛】
本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.
4、A
【解析】
【分析】
根据三角形外角和为360°计算,求出内角的度数,判断即可.
【详解】
解:设三角形的三个外角的度数分别为3x、4x、5x,
则3x+4x+5x=360°,
解得,x=30°,
∴三角形的三个外角的度数分别为90°、120°、150°,
对应的三个内角的度数分别为90°、60°、30°,
∴此三角形为直角三角形,
故选:A.
【点睛】
本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
5、D
【解析】
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
6、D
【解析】
【分析】
根据三角形的内角和定理、邻补角的性质即可得.
【详解】
解:如图,,
,
又,
,
即三角形的外角和是,
故选:D.
【点睛】
本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.
7、C
【解析】
【分析】
由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
【详解】
解:A、2+3=5,不能组成三角形,不符合题意;
B、4+4=8,不能组成三角形,不符合题意;
C、3+4.8>7,能组成三角形,符合题意;
D、3+5<9,不能组成三角形,不符合题意.
故选:C.
【点睛】
本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
8、C
【解析】
【分析】
根据三角形三条边的关系计算即可.
【详解】
解:A. ∵2+4=6,∴,,不能组成三角形;
B. ∵2+5<9,∴,,不能组成三角形;
C. ∵7+8>10,∴,,能组成三角形;
D. ∵6+6<13,∴,,不能组成三角形;
故选C.
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.
9、D
【解析】
【分析】
过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.
【详解】
解:过D作DF⊥AC于F,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,
∴DE=DF=2,
∵S△ABC=7,
∴S△ADB+S△ADC=7,
∴×AB×DE+×AC×DF=7,
∴×4×2+×AC×2=7,
解得:AC=3.
故选D .
【点睛】
本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.
10、B
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行解答即可得.
【详解】
解:根据三角形的三边关系,得
A、3+6=9,不能组成三角形,选项说法错误,不符合题意;
B、6+5=11>8,能组成三角形,选项说法正确,符合题意;
C、1+2=3<4,不能够组成三角形,选项说法错误,不符合题意;
D、5+6=11<15,不能够组成三角形,选项说法错误,不符合题意;
故选B.
【点睛】
本题考查了构成三角形的条件,解题的关键是掌握三角形的三边关系.
二、填空题
1、6
【解析】
【分析】
如图,先标注字母,证明可得从而可得结论.
【详解】
解:如图,先标注字母,
AD⊥BC于点D,BD=CD,
BC=6,AD=4,
故答案为:6
【点睛】
本题考查的是三角形的高,中线与面积的关系,掌握“三角形的中线把三角形的面积分为相等的两部分”是解本题的关键.
2、85
【解析】
【分析】
利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.
【详解】
解:∵将△ABC绕点B逆时针旋转95°,
∴∠ABE=95°,AB=BE,∠CAB=∠E,
∵AB=BE,
∴∠E=∠BAE,
∴∠BAE+∠CAB=∠BAE+∠E=180°−∠ABE
=180°−95°
=85°,
故答案为:85.
【点睛】
本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键.
3、75
【解析】
【分析】
根据平行线的性质求出∠BDC,求出∠FDE,根据三角形内角和定理求出即可.
【详解】
解:连接AC,如图:
∵AB∥CD,
∴∠BAC+∠DCA=180°,
∵∠BAF=130°,∠DCE=125°,
∴(∠CAF+∠ACE)+(∠BAC+∠DCA)=130°+125°=255°,
∴∠CAF+∠ACE=255°-(∠BAC+∠DCA)=255°+180°=75°,
∵∠CEF是△ACE外角,
∴∠CEF=∠CAF+∠ACE=75°.
故答案为:75.
【点睛】
本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同旁内角互补.
4、8cm2
【解析】
【分析】
由于三角形的中线将三角形分成面积相等的两部分,则S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E点为AD的中点得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.
【详解】
解:∵F点为CE的中点,
∴S△CFB=S△EFB=2cm2,
∴S△CEB=4cm2,
∵D点为BC的中点,
∴S△BDE=S△BCE=2cm2,
∵E点为AD的中点,
∴S△ABD=2S△BDE=4cm2,
∴S△ABC=2S△ABD=8cm2.
故答案为:8cm2.
【点睛】
本题考查了三角形的中线,根据三角形的中线等分三角形的面积是解本题的关键.
5、5
【解析】
【分析】
根据三角形三边关系及三角形面积相等即可求出要求高的整数值.
【详解】
解:因为不等边△ABC的两条高的长度分别为4和12,根据面积相等可设 △ABC的两边长为3x,x;
因为 3x×4=12×x(2倍的面积),面积S=6x,
因为知道两条边的假设长度,根据两边之和大于第三边,两边之差小于第三边可得:2x<第三边长度<4x,
因为要求高的最大长度,所以当第三边最短时,在第三边上的高就越长,
S=×第三边的长×高,6x>×2x×高,6x<×4x×高,
∴6>高>3,
∵是不等边三角形,且高为整数,
∴高的最大值为5,
故答案为:5.
【点睛】
本题考查了三角形三边关系及三角形的面积,难度较大,关键是掌握三角形任意两边之和大于第三边,三角形的任意两边差小于第三边.
三、解答题
1、见解析
【解析】
【分析】
根据角平分线的定义可得∠DAE=∠DAF,再根据两直线平行,内错角相等可得∠ADE=∠DAF,∠ADF=∠DAE,从而得解.
【详解】
解:∵DE∥AC,
∴∠ADE=∠DAF,
∵DF∥AB,
∴∠ADF=∠DAE,
又∵AD是△ABC的角平分线,
∴∠DAE=∠DAF,
∴∠ADE=∠ADF.
DA平分∠EDF.
【点睛】
本题综合考查了平行线和角平分线的性质,注意等量代换的应用.
2、(1)见解析;(2)见解析.
【解析】
【分析】
(1)作∠BAC的平分线交BD于点O,作射线CO交AB于E,线段CE即为所求;
(2)作△ABC的∠ABC的外角的平分线交AD与D,作射线CD,射线CD即为所求.
【详解】
(1)如图1,线段CE为所求;
(2)如图2,线段CD为所求.
【点睛】
本题主要考查了基本作图、三角形的外角、三角形的角平分线等知识点,理解三角形的内角平分线交于一点成为解答本题的关键.
3、.
【解析】
【分析】
先由直角三角形两锐角互余得到∠B=40°,在三角形△ABC 中,由内角和定理求得∠BAE=30°,由角平分线定义得出 ∠BAC=60°,即可求得∠ACD .
【详解】
解:为的高,
.
.
在中,.
为的角平分线,
.
.
【点睛】
此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.
4、.
【解析】
【分析】
先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据垂直的定义可得,最后根据三角形的外角性质即可得.
【详解】
解:在中,,,
,
平分,
,
为边上的高,
,
.
【点睛】
本题考查了三角形的内角和定理、角平分线的定义、三角形的外角性质等知识点,熟练掌握三角形的内角和定理是解题关键.
5、(1)30;(2)DE∥AC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;
【解析】
【分析】
(1)根据两直线平行,内错角相等求解即可;
(2)根据内错角相等,两直线平行证明即可;
(3)根据AB∥EC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;
(4)如图④所示,,设CD与AB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.
【详解】
解:(1)∵AB∥CD,
∴∠BCD=∠B=30°,
故答案为:30;
(2)DE∥AC,理由如下:
∵∠CBE=∠ACB=90°,
∴DE∥AC;
(3)∵AB∥EC,
∴∠ECB=∠B=30°,
又∵∠DCE=45°,
∴∠DCB=∠DCE-∠ECB=15°,
∴当∠DCB=15°时,AB∥EC,
故答案为:15;
(4)如图④所示,设CD与AB交于F,
∵AB∥ED,
∴∠BFC=∠EDC=90°,
∴∠DCB=180°-∠BFC-∠B=60°;
如图⑤所示,延长AC交ED延长线于G,
∵AB∥DE,
∴∠G=∠A=60°,
∵∠ACB=∠CDE=90°,
∴∠BCG=∠CDG=90°,
∴∠DCG=180°-∠G-∠CDG=30°,
∴∠DCB=∠BCG+∠DCG=120°.
【点睛】
本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.
冀教版七年级下册第九章 三角形综合与测试综合训练题: 这是一份冀教版七年级下册第九章 三角形综合与测试综合训练题,共20页。试卷主要包含了如图,直线l1,三角形的外角和是等内容,欢迎下载使用。
初中数学冀教版七年级下册第九章 三角形综合与测试同步练习题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试同步练习题,共32页。试卷主要包含了如图,为估计池塘岸边A,如图,已知△ABC中,BD等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试课后复习题: 这是一份冀教版七年级下册第九章 三角形综合与测试课后复习题,共19页。试卷主要包含了如图,,,,则的度数是等内容,欢迎下载使用。