初中数学第九章 三角形综合与测试单元测试同步测试题
展开冀教版七年级数学下册第九章 三角形单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
2、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.6 B.5 C.4 D.3
3、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )
A.63° B.58° C.54° D.56°
4、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )
A.12 B.6 C.3 D.2
5、下列长度的三条线段能组成三角形的是( )
A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 11
6、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )
A.180° B.210° C.360° D.270°
7、以下列长度的各组线段为边,能组成三角形的是( )
A.,, B.,,
C.,, D.,,
8、如图,在中,,,则外角的度数是( )
A.35° B.45° C.80° D.100°
9、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cm B.4cm C.7cm D.10cm
10、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为( )
A.32° B.33° C.34° D.38°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.
2、如图:中,,,于D,CE平分,于F,则______°.
3、已知在△ABC中,∠A+∠B<∠C,则△ABC是______三角形.(填“直角”、“锐角”或“钝角”)
4、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
5、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.
三、解答题(5小题,每小题10分,共计50分)
1、已知射线是的外角平分线.
(1)如图1,当射线与的延长线能交于一点时,则 (选填“>”“<”或“=”),并说明理由;
(2)如图2,当时,请判断与的数量关系,并证明.
2、如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,∠B=45°,∠C=30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角∠AOA'=α(0<α<180°).
(1)在旋转过程中,当α为 度时,A'B'OC,当α为 度时,A'B'⊥CD;
(2)如图2,将图1中的△OAB以点O为旋转中心旋转到△OA'B'的位置,求当α为多少度时,OB'平分∠COD;
拓展应用:
(3)当90°<α<120°时,连接A'D,利用图3探究∠B'A'D+∠B'OC+∠A'DC值的大小变化情况,并说明理由.
3、如图,ABCD,∠BMN与∠DNM的平分线相交于点G,
完成下面的证明:
∵MG平分∠BMN,
∴∠GMN=∠BMN( ),
同理∠GNM=∠DNM.
∵ABCD
∴∠BMN+∠DNM=________( ).
∴∠GMN+∠GNM=________.
∵∠GMN+∠GNM+∠G=________,
∴∠G=________.
4、在中,平分平分,求的度数.
5、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
2、D
【解析】
【分析】
过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.
【详解】
解:过D作DF⊥AC于F,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,
∴DE=DF=2,
∵S△ABC=7,
∴S△ADB+S△ADC=7,
∴×AB×DE+×AC×DF=7,
∴×4×2+×AC×2=7,
解得:AC=3.
故选D .
【点睛】
本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.
3、C
【解析】
【分析】
先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.
【详解】
解:∵∠A=33°,∠B=30°,
∴∠ACD=∠A+∠B=33°+30°=63°,
∵△ABC绕点C按逆时针方向旋转至△DEC,
∴△ABC≌△DEC,
∴∠ACB=∠DCE,
∴∠BCE=∠ACD,
∴∠BCE=63°,
∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.
故选:C.
【点睛】
本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.
4、C
【解析】
【分析】
由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.
【详解】
解:∵点D为AC的中点,
∴S△ABD=S△ABC=×12=6,
∵点E为AB的中点,
∴S△BDE=S△ABD=×6=3.
故选:C.
【点睛】
本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.
5、C
【解析】
【分析】
根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
【详解】
解:A.∵3+4<8,
∴不能组成三角形,故本选项不符合题意;
B.∵4+4<10,
∴不能组成三角形,故本选项不符合题意;
C.∵5+6>10,
∴能组成三角形,故本选项符合题意;
D.∵5+6=11,
∴不能组成三角形,故本选项不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
6、B
【解析】
【分析】
已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
【详解】
解:如图所示,
∵,
∴,
∵,,
∴,
∵,,
∴,
∵,,
∴;
故选D.
【点睛】
本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
7、C
【解析】
【分析】
根据三角形三条边的关系计算即可.
【详解】
解:A. ∵2+4=6,∴,,不能组成三角形;
B. ∵2+5<9,∴,,不能组成三角形;
C. ∵7+8>10,∴,,能组成三角形;
D. ∵6+6<13,∴,,不能组成三角形;
故选C.
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.
8、C
【解析】
【分析】
根据三角形的外角的性质直接求解即可,.
【详解】
解:∵在中,,,
∴
故选C
【点睛】
本题考查了三角形的外角的性质,掌握三角形的外角的性质是解题的关键.
9、C
【解析】
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
10、A
【解析】
【分析】
由折叠的性质可知,再由三角形外角的性质即可求出的大小,再次利用三角形外角的性质即可求出的大小.
【详解】
如图,设线段和线段交于点F.
由折叠的性质可知.
∵,即,
∴.
∵,即,
∴.
故选A.
【点睛】
本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.
二、填空题
1、120
【解析】
【分析】
根据三角形的外角性质,可得 ,即可求解.
【详解】
解:∵ 是 的外角,
∴ ,
∵∠A=50°,∠B=70°,
∴ .
故答案为:120
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
2、80
3、钝角
【解析】
【分析】
根据三角形内角和定理,当可求得可得到答案.
【详解】
解:
,
当时,可得,则为钝角三角形,
故答案为:钝角.
【点睛】
本题主要考查三角形内角和定理,解题的关键是掌握三角形的三个内角和为.
4、60°##60度
【解析】
【分析】
依题意,利用三角形内角和为:,即可;
【详解】
由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
∴ 第三个角为:;
故填:
【点睛】
本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
5、30°##30度
【解析】
【分析】
根据三角形的外角的性质,即可求解.
【详解】
解:∵ ,
∴ ,
∵∠ACD=75°,∠A=45°,
∴ .
故答案为:30°
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
三、解答题
1、(1)>,见解析;(2)∠BAC=∠B,见解析
【解析】
【分析】
(1)延长BA与射线CD交于点F,根据CD平分∠ACE,可得∠ACD=∠ECD,根据三角形外角性质可得∠BAC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,得出∠BAC=∠B+2∠AFC即可;
(2)根据CD∥BA,可得∠BAC=∠ACD,∠B=∠ECD,根据CD平分∠ACE,解得∠ACD=∠ECD即可.
【详解】
解:(1)>
理由:如图,延长BA与射线CD交于点F,
∵CD平分∠ACE,
∴∠ACD=∠ECD,
∵∠BAC=∠ACD+∠AFC=∠ECD+∠AFC,
∠ECD=∠B+∠AFC,
∴∠BAC=∠B+2∠AFC,
∴∠BAC>∠B;
(2)∠BAC=∠B,
证明:∵CD∥BA,
∴∠BAC=∠ACD,∠B=∠ECD,
∵CD平分∠ACE,
∴∠ACD=∠ECD,
∴∠BAC=∠B.
【点睛】
本题考查三角形的外角性质,角平分线定义,掌握三角形的外角性质,角平分线定义是解题关键.
2、(1)30,90;(2)105°;(3)不变,理由见解析
【解析】
【分析】
(1)根据题意作出图形,根据所给的条件求解即可;
(2)由旋转的性质可得∠AOB=∠A'OB'=45°,由角的数量关系可求解;
(3)由α可分别表示∠B'A'D,∠B'OC,∠A'DC再求和即可.
【详解】
解:(1)当A'B'∥OC时,
∴∠A′OC+∠A′=180°,
∵∠A′=90°,
∴∠A′OC=90°,
∴∠AOA′=180°﹣90°﹣60°=30°,即α=30°;
当A'B'⊥CD时,
则OA′∥CD,
∴∠AOA′=∠ODC=90°,即α=90°;
故答案为:30;90.
(2)∵△OAB以O为中心顺时针旋转得到△OA′B′,
∴∠AOB=∠A'OB'=45°,
∵∠COD=60°,OB′平分∠COD,
∴∠DOB'=30°,
∴∠AOA'=180°﹣∠DOB′﹣∠A'OB′=180°﹣30°﹣45°=105°,
即当α为105°时,OB'平分∠COD;
(3)不变,理由如下:
∵∠AOA′=α,
∴∠B′OD=180°﹣45°﹣α=135°﹣α,
∴∠B′OC=60°﹣(135°﹣α)=α﹣75°,
设∠A′DC=β,
∴∠A′DO=90°﹣β,
∴∠B′OD+∠A′DO=∠B'A'D+∠B′,即135°﹣α+90°﹣β=∠B'A'D+45°,
解得∠B'A'D=180°﹣α﹣β,
∴∠B'A'D+∠B'OC+∠A'DC=180°﹣α﹣β+α﹣75°+β=105°.
【点睛】
本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键.
3、角分线的定义;180°;两直线平行,同旁内角互补;90°;180°;90°
【解析】
【分析】
根据角平分线的定义,可得∠GMN=∠BMN,∠GNM=∠DNM. 再由ABCD,可得∠BMN+∠DNM=180°,从而得到∠GMN+∠GNM=90°.然后根据三角形的内角和定理,即可求解.
【详解】
证明:∵MG平分∠BMN,
∴∠GMN=∠BMN(角分线的定义),
同理∠GNM=∠DNM.
∵ABCD,
∴∠BMN+∠DNM=180°(两直线平行,同旁内角互补).
∴∠GMN+∠GNM=90°.
∵∠GMN+∠GNM+∠G=180°,
∴∠G=90°.
【点睛】
本题主要考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟练掌握相关知识点是解题的关键.
4、
【解析】
【分析】
根据外角的性质,求得,根据角平分线的定义可得,根据三角形的内角和求得,角平分线的性质可得,根据三角形内角和即可求解.
【详解】
解:∵,
∴,
∵平分
∴,
由三角形内角和的性质可得,,
∵平分
∴,
由三角形内角和的性质可得,.
【点睛】
此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.
5、见解析
【解析】
【分析】
根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.
【详解】
证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,
∴∠B=∠ACB,
又∵BC平分∠ACD,
∴∠ACB=∠DCB,
∴∠B=∠DCB,
∴AB∥CD(内错角相等,两直线平行).
【点睛】
本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.
初中数学冀教版七年级下册第九章 三角形综合与测试课后练习题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后练习题,共21页。试卷主要包含了如图,是的中线,,则的长为,若三角形的两边a,若一个三角形的三个外角之比为3,如图,等内容,欢迎下载使用。
初中数学冀教版七年级下册第九章 三角形综合与测试一课一练: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试一课一练,共25页。
冀教版七年级下册第九章 三角形综合与测试练习题: 这是一份冀教版七年级下册第九章 三角形综合与测试练习题,共21页。