初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题
展开冀教版七年级数学下册第九章 三角形定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为( )
A.30° B.35° C.40° D.45°
2、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )
A.0根 B.1根 C.2根 D.3根
3、如图,,,则的度数是( )
A.55° B.35° C.45° D.25°
4、如图,一扇窗户打开后,用窗钩AB可将其固定( )
A.三角形的稳定性
B.两点之间线段最短
C.四边形的不稳定性
D.三角形两边之和大于第三边
5、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )
A.30° B.35° C.45° D.60°
6、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
7、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为( )
A.8 B.7 C.6 D.5
8、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )
A.180° B.210° C.360° D.270°
9、将一副三角板按不同位置摆放,下图中与互余的是( )
A. B.
C. D.
10、以下长度的三条线段,能组成三角形的是( )
A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在中,,,,那么是______三角形.(填“锐角”、“钝角”或“直角” )
2、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.
3、如图,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且ABC的面积等于24cm2,则阴影部分图形面积等于_____cm2
4、如图,______.
5、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、(1)如图所示,直角三角板和直尺如图放置.若,试求出的度数.
(2)已知ABC的三边长a、b、c,化简.
2、如图:已知AB∥CD,BD平分∠ABC,AC平分∠BCD,求∠BOC的度数.
∵AB∥CD(已知),
∴∠ABC+ =180°( ).
∵BD平分∠ABC,AC平分∠BCD,(已知),
∴∠DBC=∠ABC,∠ACB=∠BCD(角平分线的意义).
∴∠DBC+∠ACB=( )(等式性质),
即∠DBC+∠ACB= °.
∵∠DBC+∠ACB+∠BOC=180°( ),
∴∠BOC= °(等式性质).
3、已知直线MNPQ,点A是直线MN上一个定点,点B在直线PQ上运动.点H为平面上一点,且满足∠AHB=90°.设∠HBQ=α.
(1)如图1,当α=70°时,∠HAN= .
(2)过点H作直线l平分∠AHB,直线l交直线MN于点C.
①如图2,当α=60°时,求∠ACH的度数;
②当∠ACH=30°时,直接写出α的值.
4、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.
5、如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.
【详解】
解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',
∴∠A′CA=90°﹣50°=40°,
∴∠BCB′=∠A′CA=40°,
∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.
故选:B.
【点睛】
本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.
2、B
【解析】
【分析】
根据三角形的稳定性即可得.
【详解】
解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:
或
故选:B.
【点睛】
本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.
3、D
【解析】
【分析】
根据三角形的内角和定理和对顶角相等求解即可.
【详解】
解:设AD与BC相交于O,则∠COD=∠AOB,
∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,
∴∠D=∠B=25°,
故选:D.
【点睛】
本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.
4、A
【解析】
【分析】
由三角形的稳定性即可得出答案.
【详解】
一扇窗户打开后,用窗钩AB可将其固定,
故选:A.
【点睛】
本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.
5、B
【解析】
【分析】
由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.
【详解】
解:∵△AOB绕点O逆时针旋转65°得到△COD,
∴∠AOC=65°,
∵∠AOB=30°,
∴∠BOC=∠AOC−∠AOB=35°.
故选:B.
【点睛】
本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.
6、D
【解析】
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
7、C
【解析】
【分析】
根据三角形的中线将三角形的面积分成相等的两部分即可求解.
【详解】
解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,
∴△ABC的面积=3×2=6.
故选:C.
【点睛】
考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.
8、B
【解析】
【分析】
已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
【详解】
解:如图所示,
∵,
∴,
∵,,
∴,
∵,,
∴,
∵,,
∴;
故选D.
【点睛】
本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
9、A
【解析】
【分析】
根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.
【详解】
解:选项A:根据平角的定义得:∠α+90°+∠β=180°,
∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;
选项B:如图,
故B不符合题意;
选项C:如图,
故C不符合题意;
选项D:
故D不符合题意;
故选A
【点睛】
本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.
10、C
【解析】
【分析】
由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
【详解】
解:A、2+3=5,不能组成三角形,不符合题意;
B、4+4=8,不能组成三角形,不符合题意;
C、3+4.8>7,能组成三角形,符合题意;
D、3+5<9,不能组成三角形,不符合题意.
故选:C.
【点睛】
本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
二、填空题
1、钝角
【解析】
【分析】
根据三角形按角的分类可得结论.
【详解】
解:在中,,,,
,
是钝角三角形,
故答案为:钝角.
【点睛】
本题考查三角形的分类,熟知三角形按角分为锐角三角形、直角三角形和钝角三角形是解题关键.
2、25
【解析】
【分析】
先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则.
【详解】
解:∵∠B=55°,∠C=100°,
∴∠A=180°-∠B-∠C=25°,
由平移的性质可得,
∴,
故答案为:25.
【点睛】
本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.
3、6
【解析】
【分析】
因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.
【详解】
解:如图,点F是CE的中点,
∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,
∴S△BEF=S△BEC,
∵E是AD的中点,
∴S△BDE=S△ABD,S△CDE=S△ACD,
∴S△EBC=S△ABC,
∴S△BEF=S△ABC,且S△ABC=24cm2,
∴S△BEF=6cm2,
即阴影部分的面积为6cm2.
故答案为6.
【点睛】
本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.
4、180度##
【解析】
【分析】
如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.
【详解】
解:如图,连接 记的交点为
故答案为:
【点睛】
本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.
5、20°##20度
【解析】
【分析】
根据角平分线的性质得到,再利用三角形外角的性质计算.
【详解】
解:∵与的平分线相交于点D,
∴,
∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
∴∠D=∠DCE-∠DBC=,
故答案为:20°.
【点睛】
此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.
三、解答题
1、(1)40°;(2)2b-2c
【解析】
【分析】
(1)过F作FH∥AB,则AB∥FH∥CD,根据平行线的性质即可得到结论;
(2)先根据三角形三边关系判断出a+b-c与b-a-c的符号,再把要求的式子进行化简,即可得出答案.
【详解】
(1)过点F作FH∥AB,
∵AB∥CD,FH∥AB,
∴AB∥CD∥FH,
∴∠1=∠3,∠2=∠4,
∴∠EFG=∠3+∠4=∠1+∠2,
∵∠G=90°,∠E=30°,
∴∠EFG=90°-∠E=90°-30°=60°,
即∠1+∠2=60°,
∵∠1=20°,
∴∠2=60°-∠1=60°-20°=40°;
(2)∵△ABC的三边长分别是a、b、c,
∴a+b>c,b-a<c,
∴a+b-c>0,b-a-c<0,
∴|a+b-c|-|b-a-c|=a+b-c-(-b+a+c)=a+b-c+b-a-c=2b-2c.
【点睛】
本题考查了平行线的性质,三角形三边关系,用到的知识点是平行线的性质定理、三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b-c与b-a-c的符号.
2、∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90
【解析】
【分析】
根据题意利用AB∥CD得∠ABC+∠BCD=180;等式的性质得∠DBC+∠ACB=(∠ABC+∠ACD),进而由三角形内角和为180°得∠BOC=90°.
【详解】
解:∵AB∥CD(已知),
∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),
∵BD平分∠ABC,AC平分∠BCD(已知),
∴∠DBC=∠ABC,∠ACB=∠BCD(角平分线定义),
∴∠DBC+∠ACB=(∠ABC+∠BCD)(等式性质),
即∠DBC+∠ACB=90°,
∴∠DBC+∠ACB+∠BOC=180°(三角形内角和等于180°),
∴∠BOC=90°(等式性质),
故答案为:∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90.
【点睛】
本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.
3、 (1)20°
(2)①∠ACH=15°;②α=75°
【解析】
【分析】
(1)延长BH与MN相交于点D,根据平行线的性质可得∠ADH=∠HBQ=70°,再根据三角形外角定理可得AHB=∠HAN+∠ADH,代入计算即可得出答案;
(2)①延长CH与PQ相交于点E,如图4,根据角平分线的性质可得出∠BHE的度数,再根据三角形外角定理可得∠HBQ=∠HEB+∠BHE,即可得出∠HEB的度数,再根据平行线的性质即可得出答案;
②根据平行线的性质可得∠HEB的度数,再根据三角形外角和∠HBQ=∠HEB+∠BHE,即可得出答案.
【小题1】
解:延长BH与MN相交于点D,如图3,
∵MN∥PQ,
∴∠ADH=∠HBQ=70°,
∵∠AHB=90°,
∴∠AHB=∠HAN+∠ADH,
∴∠HAN=90°-70°=20°.
【小题2】
①延长CH与PQ相交于点E,如图4,
∵∠AHB=90°,CH平分∠AHB,
∴∠BHE=∠AHB=45°,
∵∠HBQ=∠HEB+∠BHE,
∴∠HEB=60°-45°=15°,
∵MN∥PQ,
∴∠ACH=∠HEB=15°;
②α=75°.如图4,
∵∠ACH=30°,
∴∠HEB=30°,
∵∠AHB=90°,CH平分∠AHB,
∴∠BHE=∠AHB=45°,
∴∠HBQ=∠HEB+∠BHE=30°+45°=75°,
∴α=75°.
【点睛】
本题主要考查了平行线的性质,熟练应用平行线的性质进行计算是解决本题的关键.
4、∠AFB=40°.
【解析】
【分析】
由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
【详解】
解:∵AD⊥BE,
∴∠ADC=90°,
∵∠DAC=10°,
∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
∵AE是∠MAC的平分线,BF平分∠ABC,
∴,
又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
∴∠AFB=∠MAE﹣∠ABF=.
【点睛】
本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
5、150°
【解析】
【分析】
求∠BED的度数,应先求出∠ABC的度数,根据三角形的外角的性质可得,∠ABD=∠BDC﹣∠A=60°﹣45°=15°.再根据角平分线的定义可得,∠ABC=2∠ABD=2×15°=30°,根据两直线平行,同旁内角互补得∠BED的度数.
【详解】
解:∵∠BDC是△ABD的外角,
∴∠ABD=∠BDC﹣∠A=60°﹣45°=15°.
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=15°,
∴∠ABC=30°,
∵DE∥BC,
∴∠BED=180°﹣∠ABC=180°﹣30°=150°.
【点睛】
本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.
2020-2021学年第九章 三角形综合与测试同步训练题: 这是一份2020-2021学年第九章 三角形综合与测试同步训练题,共21页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。
2021学年第九章 三角形综合与测试随堂练习题: 这是一份2021学年第九章 三角形综合与测试随堂练习题,共19页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。
冀教版七年级下册第九章 三角形综合与测试当堂达标检测题: 这是一份冀教版七年级下册第九章 三角形综合与测试当堂达标检测题,共22页。