冀教版七年级下册第九章 三角形综合与测试随堂练习题
展开冀教版七年级数学下册第九章 三角形专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形中,不具有稳定性的是( )
A. B.
C. D.
2、如图,已知△ABC中,BD、CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠BAC=n°(0<n<180),那么∠BOE的度数是( )
A.90°n° B.90°n° C.45°+n° D.180°﹣n°
3、若一个三角形的三个外角之比为3:4:5,则该三角形为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
4、以下长度的线段能和长度为2,6的线段组成三角形的是( )
A.2 B.4 C.6 D.9
5、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为( )
A.32° B.33° C.34° D.38°
6、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
7、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
A.56° B.34° C.44° D.46°
8、如图,四边形ABCD是梯形,,与的角平分线交于点E,与的角平分线交于点F,则与的大小关系为( )
A. B. C. D.无法确定
9、若三角形的两边a、b的长分别为3和4,则其第三边c的取值范围是( )
A.3<c<4 B.2≤c≤6 C.1<c<7 D.1≤c≤7
10、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )
A.4 B.5 C.8 D.11
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,点D是边上一点,将沿直线翻折,使点B落在点E处,如果,那么等于______度.
2、已知的三个内角的度数之比::::,则 ______ 度, ______ 度.
3、如图,AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为24 cm2,则△ABE的面积为________cm2
4、如图,将绕点B逆时针旋转,得到,若点E恰好落在的延长线上,则__________.
5、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.
2、如图所示,在一副三角板ABC和三角板DEC中,,,∠B=30°,∠DEC=∠DCE=45°.
(1)当AB∥DC时,如图①,的度数为 °;
(2)当与重合时,如图②,判断与的位置关系并说明理由;
(3)如图③,当= °时,AB∥EC;
(4)当AB∥ED时,如图④、图⑤,分别求出的度数.
3、如图,AD是的高,CE是的角平分线.若,,求的度数.
4、若AE是边BC上的高,AD是的平分线且交BC于点D.若,,分别求和的度数.
5、如图,在△ABC中,∠ABC=30°,∠C=80°,AD是△ABC的角平分线,BE是△ABD中AD边上的高,求∠ABE的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
由三角形的稳定性的性质判定即可.
【详解】
A选项为三角形,故具有稳定性,不符合题意,故错误;
B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;
C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;
D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.
故选B.
【点睛】
本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.
2、A
【解析】
【分析】
根据BD、CE分别是△ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解.
【详解】
解:∵BD、CE分别是△ABC的角平分线,
∴,,
∴
,
∵,
∴.
故答案选:A.
【点睛】
本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于.三角形的一个外角等于与它不相邻的两个内角之和.
3、A
【解析】
【分析】
根据三角形外角和为360°计算,求出内角的度数,判断即可.
【详解】
解:设三角形的三个外角的度数分别为3x、4x、5x,
则3x+4x+5x=360°,
解得,x=30°,
∴三角形的三个外角的度数分别为90°、120°、150°,
对应的三个内角的度数分别为90°、60°、30°,
∴此三角形为直角三角形,
故选:A.
【点睛】
本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
4、C
【解析】
【分析】
根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.
【详解】
解:设第三边的长为,已知长度为2,6的线段,
根据三角形的三边关系可得,,即,根据选项可得
∴
故选C
【点睛】
本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.
5、A
【解析】
【分析】
由折叠的性质可知,再由三角形外角的性质即可求出的大小,再次利用三角形外角的性质即可求出的大小.
【详解】
如图,设线段和线段交于点F.
由折叠的性质可知.
∵,即,
∴.
∵,即,
∴.
故选A.
【点睛】
本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.
6、A
【解析】
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
7、C
【解析】
【分析】
依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
【详解】
解:如图:
∵l1∥l2,∠1=46°,
∴∠3=∠1=46°,
又∵l3⊥l4,
∴∠2=90°﹣46°=44°,
故选:C.
【点睛】
本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
8、B
【解析】
【分析】
由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.
【详解】
解:∵AD∥BC,
∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,
∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,
∴∠BAE=∠BAD,∠ABE=∠ABC,∠CDF=∠ADC,∠DCF=∠BCD,
∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,
∠CDF+∠DCF=(∠ADC+∠BCD) =90°,
∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,
∴∠1=∠2=90°,
故选:B.
【点睛】
本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.
9、C
【解析】
【分析】
根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.
【详解】
解:∵三角形的两边a、b的长分别为3和4,
∴其第三边c的取值范围是 ,
即 .
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
10、C
【解析】
【分析】
直接利用三角形三边关系得出第三边的取值范围,进而得出答案.
【详解】
解:∵一个三角形的两边长分别为3和8,
∴5<第三边长<11,
则第三边长可能是:8.
故选:C.
【点睛】
此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.
二、填空题
1、
【解析】
【分析】
先根据等腰三角形的性质和三角形内角和等于180°求出∠B=∠ACB=70°,由折叠可得∠BDC=∠EDC,由DE∥AC可得∠EDC=∠BCD,在等腰三角形BDC中求出∠BCD的度数,根据角度关系可求∠ACD的度数.
【详解】
解:如图,
,
由折叠可知,
//,
,
,
,
.
故答案为:
【点睛】
本题考查了折叠问题,涉及到平行线的性质和等腰三角形的性质,熟练运用折叠的性质是解决本题的关键.
2、 60 100
【解析】
【分析】
设一份为,则三个内角的度数分别为,,,再利用内角和定理列方程,再解方程可得答案.
【详解】
解:设一份为,则三个内角的度数分别为,,.
则,
解得.
所以,,即,.
故答案为:
【点睛】
本题考查的是三角形的内角和定理的应用,利用三角形的内角和定理构建方程是解本题的关键.
3、6
【解析】
【分析】
中线将三角形分成两个面积相等的三角形,可知,计算求解即可.
【详解】
解:由题意知
∴
∵
∴
故答案为:6.
【点睛】
本题考查了三角形的中线.解题的关键在于理解中线将三角形分成两个面积相等的三角形.
4、85
【解析】
【分析】
利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.
【详解】
解:∵将△ABC绕点B逆时针旋转95°,
∴∠ABE=95°,AB=BE,∠CAB=∠E,
∵AB=BE,
∴∠E=∠BAE,
∴∠BAE+∠CAB=∠BAE+∠E=180°−∠ABE
=180°−95°
=85°,
故答案为:85.
【点睛】
本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键.
5、三角形两边之和大于第三边
【解析】
【分析】
表示出和四边形BDEC的周长,再结合中的三边关系比较即可.
【详解】
解:的周长=
四边形BDEC的周长=
∵在中
∴
即的周长一定大于四边形BDEC的周长,
∴依据是:三角形两边之和大于第三边;
故答案为三角形两边之和大于第三边
【点睛】
本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.
三、解答题
1、∠AEC=115°
【解析】
【分析】
利用三角形的内角和定理求解 再利用三角形的高的含义求解 再结合角平分线的定义求解 再利用三角形的内角和定理可得答案.
【详解】
解: ∠BAC=80°,∠B=60°,
AD⊥BC,
AE平分∠DAC,
【点睛】
本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.
2、(1)30;(2)DE∥AC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;
【解析】
【分析】
(1)根据两直线平行,内错角相等求解即可;
(2)根据内错角相等,两直线平行证明即可;
(3)根据AB∥EC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;
(4)如图④所示,,设CD与AB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.
【详解】
解:(1)∵AB∥CD,
∴∠BCD=∠B=30°,
故答案为:30;
(2)DE∥AC,理由如下:
∵∠CBE=∠ACB=90°,
∴DE∥AC;
(3)∵AB∥EC,
∴∠ECB=∠B=30°,
又∵∠DCE=45°,
∴∠DCB=∠DCE-∠ECB=15°,
∴当∠DCB=15°时,AB∥EC,
故答案为:15;
(4)如图④所示,设CD与AB交于F,
∵AB∥ED,
∴∠BFC=∠EDC=90°,
∴∠DCB=180°-∠BFC-∠B=60°;
如图⑤所示,延长AC交ED延长线于G,
∵AB∥DE,
∴∠G=∠A=60°,
∵∠ACB=∠CDE=90°,
∴∠BCG=∠CDG=90°,
∴∠DCG=180°-∠G-∠CDG=30°,
∴∠DCB=∠BCG+∠DCG=120°.
【点睛】
本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.
3、
【解析】
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
4、;
【解析】
【分析】
根据△AEC的内角和定理可得:,根据角平分线的性质可得,根据△ABC的内角和定理可得∠BAC,又因为,,即可得解.
【详解】
解:∵AE是边BC上的高
∴
∴在中,有
又∵
∴
∵AD是的平分线
∴
∵在中,有
已知,
∴
∴
∴
【点睛】
本题考查了三角形内角和定理及角平分线的性质,熟悉这些知识点,灵活应用等量代换是解决本题的关键.
5、55°
【解析】
【分析】
先根据三角形内角和定理及角平分线的性质求出∠BAD度数,由AE⊥BE可求出∠AEB=90°,再由三角形的内角和定理即可解答.
【详解】
解:∵∠ABC=30°,∠C=80°,
∴∠BAC=180°-30°-80°=70°,
∵AD是∠BAC的平分线,
∴∠BAD=×70°=35°,
∵AE⊥BE,
∴∠AEB=90°,
∴∠ABE=180°-∠AEB-∠BAE=180°-90°-35°=55°.
【点睛】
本题考查的是角平分线的定义,高的定义及三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
七年级下册第九章 三角形综合与测试同步训练题: 这是一份七年级下册第九章 三角形综合与测试同步训练题,共25页。
2020-2021学年第九章 三角形综合与测试课后复习题: 这是一份2020-2021学年第九章 三角形综合与测试课后复习题,共27页。试卷主要包含了如图,等内容,欢迎下载使用。
2020-2021学年第九章 三角形综合与测试习题: 这是一份2020-2021学年第九章 三角形综合与测试习题,共21页。试卷主要包含了如图,在中,,,则外角的度数是,如图,,,,则的度数是,如图,等内容,欢迎下载使用。