![2022年强化训练冀教版七年级数学下册第九章 三角形章节练习试题(名师精选)第1页](http://img-preview.51jiaoxi.com/2/3/12767212/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版七年级数学下册第九章 三角形章节练习试题(名师精选)第2页](http://img-preview.51jiaoxi.com/2/3/12767212/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版七年级数学下册第九章 三角形章节练习试题(名师精选)第3页](http://img-preview.51jiaoxi.com/2/3/12767212/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第九章 三角形综合与测试课时练习
展开
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课时练习,共21页。
冀教版七年级数学下册第九章 三角形章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A. B.C. D.2、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边3、下列图形中,不具有稳定性的是( )A.等腰三角形 B.平行四边形 C.锐角三角形 D.等边三角形4、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )A.0根 B.1根 C.2根 D.3根5、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )A.105° B.120° C.135° D.150°6、如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( )A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.S△AEB=S△EDB7、在△ABC中,∠A=∠B=∠C,则∠C=( )A.70° B.80° C.100° D.120°8、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )A.1个 B.2个 C.3个 D.4个9、如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为( )A.30° B.45° C.20° D.22.5°10、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )A.1,2,3 B.3,4,7C.2,3,4 D.4,5,10第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.2、在ABC中,AD⊥BC于点D,BD=CD,若BC=6,AD=4,则图中阴影部分的面积为__________.3、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.4、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.5、不等边三角形的最长边是9,最短边是4,第三边的边长是奇数,则第三边的长度是___.三、解答题(5小题,每小题10分,共计50分)1、如图,AD是△ABC的高,AE平分∠BAC.(1)若∠B=62°,∠C=46°,求∠DAE的度数;(2)若,求∠DAE的度数.2、如图,在△ABC中,AD平分∠BAC,P为线段AD上一点,PE⊥AD交BC的延长线于点E,若∠B=35°,∠ACB=75°,求∠E的度数.3、如图,AD是△ABC的边BC上的中线,已知AB=5,AC=3.(1)边BC的取值范围是 ;(2)△ABD与△ACD的周长之差为 ;(3)在△ABC中,若AB边上的高为2,求AC边上的高.4、根据题意画出图形,并填注理由证明:三角形的内角和等于180°. 已知:△ABC求证:∴∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE BA.∵CE BA(辅助线)∴∠B=∠ECD( )∠A=∠ACE( )∵∠BCA+∠ACE+∠ECD=180°( )∴∠A+∠B+∠ACB=180°( )5、如图,在△ABC中,∠C=30°,∠B=58°,AD平分∠CAB.求∠CAD和∠1的度数. -参考答案-一、单选题1、B【解析】【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=∠BAC=(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.2、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.3、B【解析】【分析】根据三角形具有稳定性,四边形不具有稳定性即可作出选择.【详解】解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;故选:B.【点睛】本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.4、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.5、B【解析】【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.6、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=×AE×BC,S△EDB=×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.7、D【解析】【分析】根据三角形的内角和,①,进而根据已知条件,将代入①即可求得【详解】解:∵在△ABC中,,∠A=∠B=∠C,∴解得故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.8、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.9、A【解析】【分析】由三角形的外角的性质可得再结合角平分线的性质进行等量代换可得从而可得答案.【详解】解: ∠ABC与∠ACE的平分线相交于点D, 故选A【点睛】本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到是解本题的关键.10、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.二、填空题1、E【解析】【分析】到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.【详解】如图所示,连接BD、AC、GA、GB、GC、GD,∵,,∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,根据图形可知,对角线交点为E,故答案为:E.【点睛】本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.2、6【解析】【分析】如图,先标注字母,证明可得从而可得结论.【详解】解:如图,先标注字母, AD⊥BC于点D,BD=CD, BC=6,AD=4, 故答案为:6【点睛】本题考查的是三角形的高,中线与面积的关系,掌握“三角形的中线把三角形的面积分为相等的两部分”是解本题的关键.3、##度【解析】【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解: 把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°, ∠1=70°, 故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.4、40°##40度【解析】【分析】根据已知得出∠B=2∠A,∠C=∠A+20°,代入∠A+∠B+∠C=180°得出方程∠A+2∠A+∠A+20°=180°,求出即可.【详解】解:∵∠B是∠A的2倍,∠C比∠A大20°,∴∠B=2∠A,∠C=∠A+20°,∵∠A+∠B+∠C=180°,∴∠A+2∠A+∠A+20°=180°,∴∠A=40°,故答案为:40°.【点睛】本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.5、7【解析】【分析】由题意根据三角形的三边关系即可求得第三边的范围,从而由不等边三角形和奇数的定义确定第三边的长度.【详解】解:设第三边长是c,则9﹣4<c<9+4,即5<c<13,又∵第三边的长是奇数,不等边三角形的最长边为9,最短边为4,∴c=7.故答案为:7.【点睛】本题考查三角形的三边关系,注意掌握已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.三、解答题1、(1)8°;(2)15°【解析】【分析】(1)根据 三角形内角和定理求出∠BAC的度数,利用角平分线的性质求出∠CAE的度数,根据垂直的定义求出答案;(2)根据角平分线的性质推出∠CAE=∠BAE,利用垂直得到∠BAD+∠DAE=∠CAD-∠DAE,推出2∠DAE=,计算得到答案.【详解】解:(1)∵∠B=62°,∠C=46°,∴∠BAC=180°-∠B-∠C=72°,∵AE平分∠BAC,∴∠CAE=,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-∠C=44°,∴∠DAE=∠DAC-∠CAE=8°;(2)∵AE平分∠BAC,∴∠CAE=∠BAE,∵AD⊥BC,∴∠ADC=90°,∴∠BAD=90°-∠B,∠CAD=90°-∠C,∴∠BAD+∠DAE=∠CAD-∠DAE,∴90°-∠B+∠DAE =90°-∠C-∠DAE,∴2∠DAE=,∴∠DAE=15°.【点睛】此题考查了三角形角平分线的性质,三角形内角和定理,垂直的定义,熟练掌握三角形的知识是解题的关键.2、【解析】【分析】根据三角形内角和的性质求得的度数,再根据角平分线求得的度数,利用三角形外角性质求得的度数,从而求得的度数.【详解】解:∵,,∴,∵AD平分∠BAC,∴,∴,∵PE⊥AD,∴,∴.【点睛】此题考查了三角形内角和的性质,三角形外角的性质以及角平分线的性质,解题的关键是灵活利用相关性质进行求解.3、(1);(2);(3).【解析】【分析】(1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将△ABD与△ACD的周长之差转换为和的差即可得出答案;(3)设AC边上的高为,根据三角形面积公式列出方程求解即可.【详解】解:(1)∵△ABC中AB=5,AC=3,∴,即,故答案为:;(2)∵△ABD的周长为,△ACD的周长为,∵AD是△ABC的边BC上的中线,∴,∴-()=,故答案为:;(3)设AC边上的高为,根据题意得:,即,解得.【点睛】本题考查了三角形三边关系,三角形的中线,三角形的高等知识点,熟练掌握基础知识是解本题的关键.4、两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换【解析】【分析】根据平行线的性质和平角度数等于180°求解即可.【详解】解:证明:作BC的延长线CD,过点C作射线CE BA.∵CE BA(辅助线)∴∠B=∠ECD(两直线平行,同位角相等)∠A=∠ACE(两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=180°(平角等于180°)∴∠A+∠B+∠ACB=180°(等量代换)故答案为:两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换.【点睛】此题考查了证明三角形的内角和等于180°,平行线的性质以及平角度数等于180°,解题的关键是熟练掌握平行线的性质以及平角度数等于180°.5、∠CAD =46°,∠1=76°.【解析】【分析】利用三角形内角和求出∠BAC,根据角平分线定义求出∠CAD,然后根据三角形外角性质∠1=∠C+∠CAD即可求解.【详解】解:∵∠C=30°,∠B=58°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣58°=92°.又∵AD平分∠BAC,∴∠CAD=∠BAC=46°,∵∠1是△ACD的外角,∴∠1=∠C+∠CAD=30°+46°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
相关试卷
这是一份数学第九章 三角形综合与测试课后测评,共21页。试卷主要包含了如图,,,则的度数是,如图,已知△ABC中,BD,下列图形中,不具有稳定性的是等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试同步练习题,共22页。试卷主要包含了若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试同步测试题,共25页。试卷主要包含了如图,点D等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)