终身会员
搜索
    上传资料 赚现金

    2022年冀教版七年级数学下册第九章 三角形专项测评试题(无超纲)

    立即下载
    加入资料篮
    2022年冀教版七年级数学下册第九章 三角形专项测评试题(无超纲)第1页
    2022年冀教版七年级数学下册第九章 三角形专项测评试题(无超纲)第2页
    2022年冀教版七年级数学下册第九章 三角形专项测评试题(无超纲)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版七年级下册第九章 三角形综合与测试练习

    展开

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试练习,共23页。试卷主要包含了如图,已知,,,则的度数为,如图,已知△ABC中,BD等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若一个三角形的两条边的长为5和7,那么第三边的长可能是(       A.2 B.10 C.12 D.132、如图,为估计池塘岸边AB两点的距离,小方在池塘的一侧选取一点OOA=15米,OB=10米,AB间的距离不可能是(  )A.5米 B.10米 C.15米 D.20米3、如图, AD是△ABC中∠BAC的角平分线,DEAB于点ESABC=7,DE=2,AB=4,则AC长是(  )A.6 B.5 C.4 D.34、以下列各组线段为边,能组成三角形的是(       A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm5、如图,相交于点O,则下列结论不正确的是(       A. B. C. D.6、下列四个图形中,线段BE是△ABC的高的是(  )A. B.C. D.7、如图,已知,则的度数为(       A.155° B.125° C.135° D.145°8、下图中能体现∠1一定大于∠2的是(  )A. B.C. D.9、如图,已知△ABC中,BDCE分别是△ABC的角平分线,BDCE交于点O,如果设∠BACn°(0<n<180),那么∠BOE的度数是(  )A.90°n° B.90°n° C.45°+n° D.180°﹣n°10、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是(       A.50° B.60° C.40° D.30°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三角形ABC的面积为1,EAC的中点,ADBE相交于P,那么四边形PDCE的面积为______.2、在ABC中,ADBC于点DBDCD,若BC=6,AD=4,则图中阴影部分的面积为__________.3、已知三角形的三边分别为n,5,7,则n的范围是 _____.4、如图,在△ABC中,点DEF分别是BCADEC的中点,若△ABC的面积等于36,则△BEF的面积为________.5、如图:中,DCE平分F,则______°.三、解答题(5小题,每小题10分,共计50分)1、完成下面的证明已知:如图,点DEF分别是三角形ABC的边BCCAAB上的点,DE//BADF//CA求证:∠A+∠B+∠C=180°.证明:∵DE//BA∴∠3=  (        ),∠2=  (        ).DF//CA∴∠1=  (        ),BFD  (        ).∴∠2=  (        ).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).2、如图,在△ABC中,∠ABC的角平分线交AC千点E,过点EDFBC,交AB于点D,且EC平分∠BEF(1)若∠ADE=50°,求∠BEC的度数;(2)若∠ADE=α,则∠AED  (含α的代数式表示).3、已知的三边长.(1)若满足,,试判断的形状;(2)化简:4、已知射线的外角平分线.(1)如图1,当射线的延长线能交于一点时,则            (选填“>”“<”或“=”),并说明理由;(2)如图2,当时,请判断的数量关系,并证明.5、如图:已知ABCDBD平分∠ABCAC平分∠BCD,求∠BOC的度数.ABCD(已知),∴∠ABC+       =180°(       ).BD平分∠ABCAC平分∠BCD,(已知),∴∠DBCABC,∠ACBBCD(角平分线的意义).∴∠DBC+∠ACB       )(等式性质),即∠DBC+∠ACB       °.∵∠DBC+∠ACB+∠BOC=180°(       ),∴∠BOC       °(等式性质). -参考答案-一、单选题1、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.2、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,AB间的距离在5和25之间,AB间的距离不可能是5米;故选:A【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.3、D【解析】【分析】DDFACF,根据角平分线性质求出DF=DE=2,根据SADB+SADC=7和三角形面积公式求出即可.【详解】解:过DDFACFAD是△ABC中∠BAC的角平分线,DEAB于点EDE=2,DE=DF=2,SABC=7,SADB+SADC=7,×AB×DE+×AC×DF=7,×4×2+×AC×2=7,解得:AC=3.故选D .【点睛】本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.4、A【解析】【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意; 所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意; 所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意; 所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.5、B【解析】【分析】根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.【详解】解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;选项D、∵,∴,故选项D不符合题意;故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.6、D【解析】【分析】根据三角形高的画法知,过点边上的高,垂足为,其中线段的高,再结合图形进行判断.【详解】解:线段的高的图是选项故选:D.【点睛】本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.7、B【解析】【分析】根据三角形外角的性质得出,再求即可.【详解】解:∵故选:B.【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.8、C【解析】【分析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B、如图, 若两线平行,则∠3=∠2,则 若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.9、A【解析】【分析】根据BDCE分别是△ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解.【详解】解:∵BDCE分别是△ABC的角平分线,故答案选:A.【点睛】本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于.三角形的一个外角等于与它不相邻的两个内角之和.10、A【解析】【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.二、填空题1、【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BDDC=2:1,EAC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得,再根据△ABC的面积是1即可求得xy的值,从而求解.【详解】解:连接CP, 设△CPE的面积是x,△CDP的面积是yBDDC=2:1,EAC的中点, ∴△BDP的面积是2y,△APE的面积是xBDDC=2:1,CEAC=1:2, ∴△ABP的面积是4x∴4x+x=2y+x+y解得又∵4x+x=解得:x=,则 则四边形PDCE的面积为x+y=故答案为:【点睛】本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.2、6【解析】【分析】如图,先标注字母,证明可得从而可得结论.【详解】解:如图,先标注字母, ADBC于点DBDCD   BC=6,AD=4, 故答案为:6【点睛】本题考查的是三角形的高,中线与面积的关系,掌握“三角形的中线把三角形的面积分为相等的两部分”是解本题的关键.3、2<n<12【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求第三边长的范围.【详解】解:由三角形三边关系定理得:7﹣5<n<7+5,即2<n<12n的范围是2<n<12.故答案为:2<n<12.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4、9【解析】【分析】根据三角形的中线将三角形分成面积相等的两部分即可求得.【详解】解:∵点DEF分别是BCADEC的中点,AEDEADEFCFCEBDDCBC∵△ABC的面积等于36,故答案为:9.【点睛】本题主要考查了三角形中线的性质,熟知三角形的中线把三角形分成面积相等的两部分是解题关键..5、80三、解答题1、∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换【解析】【分析】先根据平行线的性质得出∠A=∠2,∠1=∠C,∠3=∠B,再由平角的定义即可得出结论.【详解】证明:∵DE//B∴∠3=∠B(两直线平行,同位角相等),∠2=∠BFD(两直线平行,内错角相等),DF//CA∴∠1=∠C(两直线平行,同位角相等),A=∠BFD(两直线平行,同位角相等),∴∠2=∠A(等量代换).∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠C=180°(等量代换).故答案为:∠B,两直线平行,同位角相等;∠BFD,两直线平行,内错角相等;∠C,两直线平行,同位角相等;∠A,两直线平行,同位角相等;∠A,等量代换.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.2、(1)77.5°;(2)90°﹣α;【解析】【分析】(1)根据平行线的性质得到∠ABC=∠ADE=50°,根据角平分线的定义∠EBC=25°,根据角平分线的定义和平行线的性质可得∠BEC=∠C,根据三角形的内角和定理即可得到结论;(2)根据角平分线的定义和平行线的性质以及三角形的内角和定理即可得到结论.【详解】解:(1)∵DFBC∴∠ADE=∠ABC=50°,∠CEF=∠CBE平分∠ABC∴∠DEB=∠EBC=25°,EC平分∠BEF∴∠CEF=∠BEC=∠C∵∠BEC+∠C+∠EBC=180°,∴∠BEC=77.5°;(2)∵DFBC∴∠ADE=∠ABC=α,BE平分∠ABC∴∠DEB=∠EBCα,EC平分∠BEF∴∠AED=∠CEF(180°﹣α)=90°﹣α.故答案为:90°﹣α.【点睛】本题考查平行的性质与判定,角平分线的性质,以及三角形的内角和定理,熟练应用平行的性质与判定结合角平分线的性质是解决本题的关键.3、(1)是等边三角形;(2)【解析】【分析】(1)由性质可得a=bb=c,故为等边三角形.(2)根据三角形任意两边和大于第三边,任意两边差小于第三边判定正负,再由绝对值性质去绝对值计算即可.【详解】(1)∵ 是等边三角形.(2)∵的三边长b-c-a<0,a-b+c>0,a-b-c<0原式===【点睛】本题考查了三角形三条边的关系以及绝对值化简,根据三角形任意两边和大于第三边,任意两边差小于第三边判定绝对值内数值正负是解题的关键.4、(1)>,见解析;(2)∠BAC=∠B,见解析【解析】【分析】(1)延长BA与射线CD交于点F,根据CD平分∠ACE,可得∠ACD=∠ECD,根据三角形外角性质可得∠BAC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,得出∠BAC=∠B+2∠AFC即可;(2)根据CDBA,可得∠BAC=∠ACD,∠B=∠ECD,根据CD平分∠ACE,解得∠ACD=∠ECD即可.【详解】解:(1)>理由:如图,延长BA与射线CD交于点FCD平分∠ACE∴∠ACD=∠ECD∵∠BAC=∠ACD+∠AFC=∠ECD+∠AFCECD=∠B+∠AFC∴∠BAC=∠B+2∠AFC∴∠BAC>∠B(2)∠BAC=∠B证明:∵CDBA∴∠BAC=∠ACD,∠B=∠ECDCD平分∠ACE∴∠ACD=∠ECD∴∠BAC=∠B【点睛】本题考查三角形的外角性质,角平分线定义,掌握三角形的外角性质,角平分线定义是解题关键.5、BCD,两直线平行,同旁内角互补,∠ABC+BCD90,三角形内角和等于180°,90【解析】【分析】根据题意利用ABCD得∠ABC+∠BCD=180;等式的性质得∠DBC+∠ACB=(∠ABC+∠ACD),进而由三角形内角和为180°得∠BOC=90°.【详解】解:∵ABCD(已知),∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),BD平分∠ABCAC平分∠BCD(已知),∴∠DBCABC,∠ACBBCD(角平分线定义),∴∠DBC+∠ACB(∠ABC+∠BCD)(等式性质),即∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠BOC=180°(三角形内角和等于180°),∴∠BOC=90°(等式性质),故答案为:∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90.【点睛】本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用. 

    相关试卷

    初中数学冀教版七年级下册第九章 三角形综合与测试课后测评:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后测评,共23页。

    初中数学冀教版七年级下册第九章 三角形综合与测试课后复习题:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后复习题,共22页。试卷主要包含了如图,在中,,,则外角的度数是,如图,,,,则的度数是等内容,欢迎下载使用。

    冀教版七年级下册第九章 三角形综合与测试同步训练题:

    这是一份冀教版七年级下册第九章 三角形综合与测试同步训练题,共21页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map