搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析冀教版七年级数学下册第九章 三角形达标测试试题(含解析)

    2022年必考点解析冀教版七年级数学下册第九章 三角形达标测试试题(含解析)第1页
    2022年必考点解析冀教版七年级数学下册第九章 三角形达标测试试题(含解析)第2页
    2022年必考点解析冀教版七年级数学下册第九章 三角形达标测试试题(含解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第九章 三角形综合与测试课后测评

    展开

    这是一份数学第九章 三角形综合与测试课后测评,共26页。试卷主要包含了如图,在ABC中,点D,如图,点B,三角形的外角和是等内容,欢迎下载使用。
    冀教版七年级数学下册第九章 三角形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列长度的三条线段能组成三角形的是(       A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,72、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是(  )A.30° B.35° C.45° D.60°3、如图,将一个含有30°角的直角三角板放置在两条平行线ab上,若,则的度数为(       A.85° B.75° C.55° D.95°4、如图,在ABC中,点DE分别是ACAB的中点,且,则       A.12 B.6 C.3 D.25、下列各组线段中,能构成三角形的是(       A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、66、如图所示,一副三角板叠放在一起,则图中等于(       A.105° B.115° C.120° D.135°7、如图,点BGC在直线FE上,点D在线段AC上,下列是ADB的外角的是(  )A.∠FBA B.∠DBC C.∠CDB D.∠BDG8、下列长度的三条线段能组成三角形的是(       A.3,4,8 B.5,6,11 C.5,6,10 D.4,5,99、三角形的外角和是(  )A.60° B.90° C.180° D.360°10、如图,ADBC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是(  )A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将绕点B逆时针旋转,得到,若点E恰好落在的延长线上,则__________2、如图,直线ab,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.3、在中,若,则_______.4、我们将一副三角尺按如图所示的位置摆放,则_______°.5、边长为1的小正方形组成如图所示的6×6网格,点ABCDEFGH都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.三、解答题(5小题,每小题10分,共计50分)1、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:ABCD.2、已知:如图,△ABC中,∠BAC=80°,ADBCDAE平分∠DAC,∠B=60°,求∠AEC的度数.3、已知直线MNPQ,点A是直线MN上一个定点,点B在直线PQ上运动.点H为平面上一点,且满足∠AHB=90°.设∠HBQα(1)如图1,当α=70°时,∠HAN           (2)过点H作直线l平分∠AHB,直线l交直线MN于点C①如图2,当α=60°时,求∠ACH的度数;②当∠ACH=30°时,直接写出α的值.4、已知直线ABCDEF是截线,点M在直线ABCD之间.(1)如图1,连接GMHM.求证:(2)如图2,在的角平分线上取两点MQ,使得.请直接写出之间的数量关系;(3)如图3,若射线GH平分,点NMH的延长线上,连接GN,若,求的度数.5、如图,在同一平面内,点DE是△ABC外的两点,请按要求完成下列问题.(此题作图不要求写出画法)(1)请你判断线段AC的数量关系是_________,理由是_________________.(2)连接线段CD,作射线BE、直线DE,在四边形BCDE的边BCCDDEEB上任取一点,分别为点KLMN并顺次连接它们,则四边形KLMN的周长与四边形BCDE周长哪一个大,直接写出结果(不用说出理由).(3)在四边形KLMN内找一点O,使它到四边形四个顶点的距离之和最小(作图找到点即可). -参考答案-一、单选题1、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.2、B【解析】【分析】由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.【详解】解:∵△AOB绕点O逆时针旋转65°得到△COD∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC−∠AOB=35°.故选:B.【点睛】本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.3、A【解析】【分析】由平行线的性质,得,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出4、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则SABDSABC=6,然后利用SBDESABD求解.【详解】解:∵点DAC的中点,SABDSABC×12=6,∵点EAB的中点,SBDESABD×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.5、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.A、,不能构成三角形,此项不符题意;B、,不能构成三角形,此项不符题意;C、,能构成三角形,此项符合题意;D、,不能构成三角形,此项不符题意;故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.6、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,∴∠CAO=∠BAC-∠DAE=60°-45°=15°,=∠C+∠CAO=90°+15°=105°,故选:A.【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.7、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.8、C【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A、3+4=7<8,不能组成三角形,该选项不符合题意;B、5+6=11,不能够组成三角形,该选项不符合题意;C、5+6=11>10,能够组成三角形,该选项符合题意;D、4+5=9,不能够组成三角形,该选项不符合题意.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,即三角形的外角和是故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.10、D【解析】【分析】根据ADBC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用ADBC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵ADBC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确ADBC∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.二、填空题1、85【解析】【分析】利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.【详解】解:∵将△ABC绕点B逆时针旋转95°,∴∠ABE=95°,ABBE,∠CAB=∠EABBE∴∠E=∠BAE∴∠BAE+∠CAB=∠BAE+∠E=180°−∠ABE=180°−95°=85°,故答案为:85.【点睛】本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键.2、27【解析】【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图ab,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A=∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.3、65°##65度【解析】【分析】由三角形的内角和定理,得到,即可得到答案;【详解】解:在中,故答案为:65°.【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.4、45【解析】【分析】利用三角形的外角性质分别求得∠α和∠β的值,代入求解即可.【详解】解:根据题意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α−∠β=120°-75°=45°,故答案为:45.【点睛】本题考查了三角形的外角性质,解答本题的关键是明确题意,找到三角板中隐含的角的度数,利用数形结合的思想解答.5、E【解析】【分析】到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.【详解】如图所示,连接BDACGAGBGCGD∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,根据图形可知,对角线交点为E故答案为:E【点睛】本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.三、解答题1、见解析【解析】【分析】连接,再根据三角形的三边关系即可得出结论.【详解】连接当且仅当CD过圆心O时,取“=”号,【点睛】本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.2、∠AEC=115°【解析】【分析】利用三角形的内角和定理求解 再利用三角形的高的含义求解 再结合角平分线的定义求解 再利用三角形的内角和定理可得答案.【详解】解:BAC=80°,∠B=60°, ADBC AE平分∠DAC 【点睛】本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.3、 (1)20°(2)①∠ACH=15°;②α=75°【解析】【分析】(1)延长BHMN相交于点D,根据平行线的性质可得∠ADH=∠HBQ=70°,再根据三角形外角定理可得AHB=∠HAN+∠ADH,代入计算即可得出答案;(2)①延长CHPQ相交于点E,如图4,根据角平分线的性质可得出∠BHE的度数,再根据三角形外角定理可得∠HBQ=∠HEB+∠BHE,即可得出∠HEB的度数,再根据平行线的性质即可得出答案;②根据平行线的性质可得∠HEB的度数,再根据三角形外角和∠HBQ=∠HEB+∠BHE,即可得出答案.【小题1】解:延长BHMN相交于点D,如图3,MNPQ∴∠ADH=∠HBQ=70°,∵∠AHB=90°,∴∠AHB=∠HAN+∠ADH∴∠HAN=90°-70°=20°.【小题2】①延长CHPQ相交于点E,如图4,∵∠AHB=90°,CH平分∠AHB∴∠BHEAHB=45°,∵∠HBQ=∠HEB+∠BHE∴∠HEB=60°-45°=15°,MNPQ∴∠ACH=∠HEB=15°;α=75°.如图4,∵∠ACH=30°,∴∠HEB=30°,∵∠AHB=90°,CH平分∠AHB∴∠BHEAHB=45°,∴∠HBQ=∠HEB+∠BHE=30°+45°=75°,α=75°.【点睛】本题主要考查了平行线的性质,熟练应用平行线的性质进行计算是解决本题的关键.4、 (1)见解析(2)∠GQH+∠GMH=180°,理由见解析(3)60°【解析】【分析】(1)过点MMIABEF于点I,可得∠AGM=∠GMI,再由ABCD,可得MICD,从而得到∠CHM=∠HMI,即可求证;(2)过点MMPABEF于点P,同(1)可得到∠PMH=∠CHM,∠GMP=∠AGM,再由MH平分∠GHC,可得∠PHM=∠CHM,从而得到∠PHM=∠PMH,再由,可得∠HGQ=∠GMP,从而得到∠GMH=∠HGQ+∠PHM,然后根据三角形的内角和定理,即可求解;(3)过点MMKABEF于点K,设 ,可得 ,同(1),可得∠GMH=∠GMK+HMK= ,再由,可得,然后根据三角形的内角和定理,可得 ,再由ABCD,可得∠AGH+∠CHG=180°,即可求解.(1)证明:如图,过点MMIABEF于点IMIAB∴∠AGM=∠GMIABCDMICD∴∠CHM=∠HMI∴∠GMH=∠HMI +∠GMI= ∠AGM +∠CHM(2)解:∠GQH+∠GMH=180°,理由如下:如图,过点MMPABEF于点PMPAB∴∠GMP=∠AGMABCDMPCD∴∠PMH=∠CHMMH平分∠GHC∴∠PHM=∠CHM∴∠PHM=∠PMH∴∠HGQ=∠GMP∵∠GMH=∠GMP+∠PMH∴∠GMH=∠HGQ+∠PHM∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点MMKABEF于点KGH平分∠BGMMKABABCDMKCD∴∠HMK=∠CHM∴∠GMH=∠GMK+HMK=,即∵∠GMH+∠N+∠MGN=180°,解得:ABCD   ∴∠AGH+∠CHG=180°,∴∠MHG=60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.5、 (1)AB+BCAC,三角形的两边之和之和大于第三边(2)作图见解析,四边形KLMN的周长小于四边形BCDE周长(3)见解析【解析】【分析】(1)根据三角形的两边之和大于等三边判断即可;(2)根据直线,射线,线段的大于以及题目要求作出图形即可;(3)连接KMLN交于点O,点O即为所求.【小题1】解:AB+BCAC(三角形的两边之和之和大于第三边),故答案为:AB+BCAC,三角形的两边之和之和大于第三边;【小题2】如图,线段CD,射线BE,直线DE,四边形KLMN即为所求.四边形KLMN的周长小于四边形BCDE周长.理由是:在△EMN和△BNK和△DLM和△CLK中,EM+ENMNBN+BKKNDM+DLMLCK+CLKLEN+EM+DM+DL+BN+BK+CL+CKMN+NK+ML+KL即四边形KLMN的周长小于四边形BCDE周长.【小题3】如图,连接NLMK,交于点O,点O即为所求,根据两点之间,线段最短可得:NLON+OLMKMO+KO∴点O到四个顶点的距离最短.【点睛】本题考查作图-复杂作图,三角形的两边之和大于等三边等知识,解题的关键是理解直线,射线,线段的定义,灵活应用所学知识解决问题. 

    相关试卷

    数学七年级下册第九章 三角形综合与测试单元测试一课一练:

    这是一份数学七年级下册第九章 三角形综合与测试单元测试一课一练,共21页。试卷主要包含了下列图形中,不具有稳定性的是,如图,点D,如图,,,,则的度数是等内容,欢迎下载使用。

    数学七年级下册第九章 三角形综合与测试复习练习题:

    这是一份数学七年级下册第九章 三角形综合与测试复习练习题,共24页。试卷主要包含了三角形的外角和是,若三角形的两边a等内容,欢迎下载使用。

    初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题:

    这是一份初中数学冀教版七年级下册第九章 三角形综合与测试随堂练习题,共23页。试卷主要包含了如图,直线l1l2,被直线l3,若一个三角形的三个外角之比为3等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map