冀教版七年级下册第九章 三角形综合与测试同步测试题
展开这是一份冀教版七年级下册第九章 三角形综合与测试同步测试题,共25页。试卷主要包含了如图,为估计池塘岸边A等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
A.1,2,3 B.3,4,7
C.2,3,4 D.4,5,10
2、三个等边三角形的摆放位置如图所示,若,则的度数为
A. B. C. D.
3、如图,,,,则的度数是( )
A.10° B.15° C.20° D.25°
4、以下列长度的各组线段为边,能组成三角形的是( )
A.,, B.,,
C.,, D.,,
5、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
6、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
A.1个 B.2个 C.3个 D.4个
7、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是( )
A.5米 B.10米 C.15米 D.20米
8、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )
A.80° B.90° C.100° D.120°
9、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )
A. B.
C. D.
10、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
A.∠FBA B.∠DBC C.∠CDB D.∠BDG
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:
①平分;
②;
③与互余的角有个;
④若,则.
其中正确的是________.(请把正确结论的序号都填上)
2、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.
3、中,比大10°,,则______.
4、如图,在△ABC中,点D在CB的延长线上,∠A=60°,∠ABD=110°,则∠C等于___.
5、如图,三角形ABC的面积为1,,E为AC的中点,AD与BE相交于P,那么四边形PDCE的面积为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BAC=50°,∠C=60°,求∠DAC和∠BOA的度数.
2、将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,其中∠A=60°,∠D=45°.
(1)如图1,若∠BOD=65°,则∠AOC=______ ;∠AOC=120°,则∠BOD=____ ;
(2)如图2,若∠AOC=150°,则∠BOD=_____ ;
(3)猜想∠BOD与∠AOC的数量关系,并结合图1说明理由;
(4)如图3三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针以1秒钟15°的速度旋转,当时间t(其中0<t≤6,单位:秒)为何值时,这两块三角尺各有一条边互相垂直,直接写出t的值.
3、已知,△ABC中,∠C>∠B,AE平分∠BAC,M是AE上一点,MN⊥BC于N.
(1)如图①,当点M与A重合时,若∠B=40°,∠C=80°,求∠EMN的度数;
(2)如图②,当点M在线段AE上(不与A,E重合),用等式表示∠EMN与∠B,∠C之间的数量关系,并证明你的结论;
(3)如图③,当点M在线段AE的延长线上,连接MC,过点A做MC的垂线,交MC的延长线于点F,交BC的延长线上于点D.
①依题意补全图形;
②若∠B=α°,∠ACB=β°,∠D=γ°,则∠AMC= °.
(用含α,β,γ的式子表示)
4、如图,在中(),,边上的中线把的周长分成和两部分,求和的长.
5、已知:如图,△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
【详解】
解:A、1+2=3,不能组成三角形,不符合题意;
B、3+4=7,不能组成三角形,不符合题意;
C、2+3>4,能组成三角形,符合题意;
D、4+5<10,不能组成三角形,不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
2、A
【解析】
【分析】
利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
【详解】
解:,,
,
,
,
,
故选:.
【点睛】
本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
3、B
【解析】
【分析】
根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.
【详解】
解:∵AB∥CD,∠A=45°,
∴∠A=∠DOE=45°,
∵∠DOE=∠C+∠E,
又∵,
∴∠E=∠DOE-∠C=15°.
故选:B
【点睛】
本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.
4、C
【解析】
【分析】
根据三角形三条边的关系计算即可.
【详解】
解:A. ∵2+4=6,∴,,不能组成三角形;
B. ∵2+5<9,∴,,不能组成三角形;
C. ∵7+8>10,∴,,能组成三角形;
D. ∵6+6<13,∴,,不能组成三角形;
故选C.
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.
5、A
【解析】
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
6、C
【解析】
【分析】
根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
【详解】
解:c的范围是:5﹣3<c<5+3,即2<c<8.
∵c是奇数,
∴c=3或5或7,有3个值.
则对应的三角形有3个.
故选:C.
【点睛】
本题主要考查了三角形三边关系,准确分析判断是解题的关键.
7、A
【解析】
【分析】
根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.
【详解】
解:连接AB,
根据三角形的三边关系定理得:
15﹣10<AB<15+10,
即:5<AB<25,
∴A、B间的距离在5和25之间,
∴A、B间的距离不可能是5米;
故选:A.
【点睛】
本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.
8、B
【解析】
【分析】
根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.
【详解】
解:由题意得:α=2β,α=60°,则β=30°,
180°-60°-30°=90°,
故选B.
【点睛】
此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.
9、B
【解析】
【分析】
根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
【详解】
解:由三角形内角和知∠BAC=180°-∠2-∠1,
∵AE为∠BAC的平分线,
∴∠BAE=∠BAC=(180°-∠2-∠1).
∵AD为BC边上的高,
∴∠ADC=90°=∠DAB+∠ABD.
又∵∠ABD=180°-∠2,
∴∠DAB=90°-(180°-∠2)=∠2-90°,
∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
故选:B
【点睛】
本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.
10、C
【解析】
【分析】
根据三角形的外角的概念解答即可.
【详解】
解:A.∠FBA是△ABC的外角,故不符合题意;
B. ∠DBC不是任何三角形的外角,故不符合题意;
C.∠CDB是∠ADB的外角,符合题意;
D. ∠BDG不是任何三角形的外角,故不符合题意;
故选:C.
【点睛】
本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
二、填空题
1、①②
【解析】
【分析】
由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.
【详解】
∵BD平分∠GBE
∴∠EBD=∠GBD=∠GBE
∵BD⊥BC
∴∠GBD+∠GBC=∠CBD=90°
∴∠DBE+∠ABC=90°
∴∠GBC=∠ABC
∴BC平分∠ABG
故①正确
∵CB平分∠ACF
∴∠ACB=∠GCB
∵AE∥CF
∴∠ABC=∠GCB
∴∠ACB=∠GCB=∠ABC=∠GBC
∴AC∥BG
故②正确
∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC
∴与∠DBE互余的角共有4个
故③错误
∵AC∥BG,∠A=α
∴∠GBE=α
∴
∵AE∥CF
∴∠BGD=180°-∠GBE=180°−α
∴∠BDF=∠GBD+∠BGD=
故④错误
即正确的结论有①②
故答案为:①②
【点睛】
本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.
2、30°##30度
【解析】
【分析】
设三角形的三个内角分别为x,2x,3x,再根据三角形内角和定理求出x的值,进而可得出结论.
【详解】
解:∵三角形三个内角的比为1:2:3,
∴设三角形的三个内角分别为x,2x,3x,
∴x+2x+3x=180°,解得x=30°.
∴这个三角形最小的内角的度数是30°.
故答案为:30°.
【点睛】
本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
3、70°
【解析】
【分析】
根据三角形内角和定理可得,由题意比大,可得,组成方程组求解即可.
【详解】
解:∵,
∴,
∵比大,
∴,
∴,
解得:,
故答案为:.
【点睛】
题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.
4、50°
【解析】
【分析】
首先根据平角的概念求出的度数,然后根据三角形内角和定理即可求出的度数.
【详解】
解:∵∠ABD=110°,
∴,
∴
故答案为:50°.
【点睛】
此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.
5、
【解析】
【分析】
连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得,再根据△ABC的面积是1即可求得x、y的值,从而求解.
【详解】
解:连接CP, 设△CPE的面积是x,△CDP的面积是y.
∵BD:DC=2:1,E为AC的中点,
∴△BDP的面积是2y,△APE的面积是x,
∵BD:DC=2:1,CE:AC=1:2,
∴△ABP的面积是4x.
∴4x+x=2y+x+y,
解得.
又∵4x+x=,
解得:x=,则
则四边形PDCE的面积为x+y=.
故答案为:.
【点睛】
本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.
三、解答题
1、∠DAC=30°,∠BOA=120°.
【解析】
【分析】
根据三角形的内角和定理,高线、角平分线的定义进行解答即可.
【详解】
解:∵在△ABC中,AD是高,
∴∠ADC=90°,
∵在△ACD中,∠C=60°,
∴∠DAC=90°-60°=30°,
∵在△ABC中,∠C=60°,∠BAC=50°,
∴∠ABC=70°,
∵在△ABC中,AE,BF分别是∠BAC和∠ABC的角平分线,
∴∠EAC=∠BAC=25°,∠FBC=∠ABC=35°,
∴∠BOA=∠BEA+∠FBC=∠C+∠EAC+∠FBC=60°+25°+35°=120°.
【点睛】
本题考查了三角形的内角和定理,高线、角平分线的定义,熟记定义并准确识图,理清图中各角度之间的关系是解题的关键.
2、(1)115°,60°;(2)30°;(3)∠AOC+∠DOB=180°,理由见解析;(4)时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.
【解析】
【分析】
(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;
(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;
(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;
(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.
【详解】
解:(1)若∠BOD=65°,
∵∠AOB=∠COD=90°,
∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-65°=115°,
若∠AOC=120°,
则∠BOD=∠AOB+∠COD-∠AOC=90°+90°-120°=60°;
故答案为:115°;60°;
(2)如图2,若∠AOC=150°,
则∠BOD=360°-∠AOC-∠AOB-∠COD
=360°-150°-90°-90°
=30°;
故答案为:30°;
(3)∠AOC与∠BOD互补.理由如下:
∵∠AOB=∠COD=90°,
∴∠AOD+∠BOD+∠BOD+∠BOC=180°.
∵∠AOD+∠BOD+∠BOC=∠AOC,
∴∠AOC+∠BOD=180°,
即∠AOC与∠BOD互补;
(4)分四种情况讨论:
当OD⊥AB时,∠AOD=90°-∠A=30°,t=30°15°=2(秒);
当CD⊥OB时,∠AOD=∠D=45°,t=45°15°=3(秒);
当CD⊥AB时,∠AOD=180°-60°-45°=75°,t=75°15°=5(秒);
当OD⊥OA时,∠AOD=90°,t=90°15°=6(秒);
综上,时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.
【点睛】
本题主要考查了互补、互余的定义,垂直的定义以及三角形内角和定理等知识的综合运用,解决本题的关键是掌握:如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.
3、(1);(2),见解析;(3)①见解析;②
【解析】
【分析】
(1)根据三角形内角和求出∠BAC=180°-40°-80°=60°.根据AE平分∠BAC,∠CAE=∠BAC=30°,利用三角形内角和∠C=80°,∠MNC=90°,得出∠CMN=10°即可;
(2)∠EMN=(∠C-∠B);证法1:如图,作AD⊥BC于D.根据AE平分∠BAC,可得∠EAC=∠BAC=(180°-∠B-∠C).根据,Rt△DAC中,∠DAC=90°-∠C,得出∠EAD=∠EAC-∠DAC=(∠C-∠B).根据AD⊥BC,MN⊥BC,可得AD//MN,得出∠EMN=∠EAD=(∠C-∠B).证法2:根据 AE平分∠BAC,得出∠EAC=∠BAC=(180°-∠B-∠C),根据三角形内角和得出∠AEC=180°-∠EAC-∠C=90°-(∠C-∠B)即可;
(3)①依题意补全图形,当点M在线段AE的延长线上,连接MC,过点A作AD⊥MC交MC的延长线于点F,交BC的延长线上于点D,如图;
②∠AMC=.过A作AG⊥BC于G,MN⊥BC于N,可得MN∥AG,得出∠NME=∠GAE=(∠ACB-∠B),根据MC⊥AD,得出∠CFD=∠CNM=90°,可证∠NMC=∠D,
根据两角差∠AMC=∠NMC-∠NME=∠D-∠NME=∠D-∠ACB+∠B即可
【详解】
解:(1)∵∠B=40°,∠C=80°,
∴∠BAC=180°-40°-80°=60°.
又∵AE平分∠BAC,
∴∠CAE=∠BAC=30°,
∵∠C=80°,∠MNC=90°,
∴∠CMN=10°,
∴∠EMN=∠CAE-∠CMN=30°-10°=20°;
(2)∠EMN=(∠C-∠B). …
证法1:如图,作AD⊥BC于D.
∵AE平分∠BAC,
∴∠EAC=∠BAC=(180°-∠B-∠C).
∵,
∴Rt△DAC中,∠DAC=90°-∠C,
∴∠EAD=∠EAC-∠DAC
=(180°-∠B-∠C)-(90°-∠C)=(∠C-∠B).
∵AD⊥BC,MN⊥BC,
∴AD//MN,
∴∠EMN=∠EAD=(∠C-∠B).
证法2:∵AE平分∠BAC,
∴∠EAC=∠BAC=(180°-∠B-∠C),
∴∠AEC=180°-∠EAC-∠C=90°-(∠C-∠B),
∴∠EMN=90°-∠AEC=(∠C-∠B).
(3)①依题意补全图形,当点M在线段AE的延长线上,连接MC,过点A作AD⊥MC交MC的延长线于点F,交BC的延长线上于点D.如图;
②∠AMC=.
过A作AG⊥BC于G,MN⊥BC于N,
∴MN∥AG,
∴∠NME=∠GAE=(∠ACB-∠B),
∵MC⊥AD,
∴∠CFD=∠CNM=90°,
∵∠FCD=∠NCM,
∴∠NMC=180°-∠CNM-∠NCM=180°-∠CFD-∠FCD=∠D,
∴∠AMC=∠NMC-∠NME=∠D-∠NME=∠D-∠ACB+∠B,
∵∠B=α°,∠ACB=β°,∠D=γ°,
∴∠AMC=γ°-β°+α°.
【点睛】
本题考查三角形内角和,角平分线定义,平行线性质,角的和差,补全图形,垂线定义,掌握三角形内角和,角平分线定义,平行线性质,角的和差,作图语句,垂线定义是解题关键.
4、,
【解析】
【分析】
由题意可得,,由中线的性质得,故可求得,即可求得.
【详解】
由题意知,,
∵,D为BC中点
∴
∴
即
则BC=24,CD=BD=12
则
且28>24符合题意.
【点睛】
本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.
5、∠AEC=115°
【解析】
【分析】
利用三角形的内角和定理求解 再利用三角形的高的含义求解 再结合角平分线的定义求解 再利用三角形的内角和定理可得答案.
【详解】
解: ∠BAC=80°,∠B=60°,
AD⊥BC,
AE平分∠DAC,
【点睛】
本题考查的是三角形的高,角平分线的含义,三角形的内角和定理的应用,熟练的运用三角形的高与角平分线的定义结合三角形的内角和定理得到角与角之间的关系是解本题的关键.
相关试卷
这是一份初中数学第九章 三角形综合与测试课堂检测,共21页。试卷主要包含了如图,,,,则的度数是,如图,图形中的的值是,如图,为估计池塘岸边A等内容,欢迎下载使用。
这是一份冀教版七年级下册第九章 三角形综合与测试练习题,共23页。试卷主要包含了下列叙述正确的是,如图,是的中线,,则的长为等内容,欢迎下载使用。
这是一份数学七年级下册第九章 三角形综合与测试同步训练题,共25页。试卷主要包含了如图,图形中的的值是等内容,欢迎下载使用。

