![精品试卷冀教版七年级数学下册第九章 三角形达标测试试卷(含答案详解)01](http://img-preview.51jiaoxi.com/2/3/12766986/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第九章 三角形达标测试试卷(含答案详解)02](http://img-preview.51jiaoxi.com/2/3/12766986/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第九章 三角形达标测试试卷(含答案详解)03](http://img-preview.51jiaoxi.com/2/3/12766986/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第九章 三角形综合与测试课堂检测
展开冀教版七年级数学下册第九章 三角形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、以下各组线段长为边,能组成三角形的是( )
A.,, B.,, C.,, D.,,
2、如图,四边形ABCD是梯形,,与的角平分线交于点E,与的角平分线交于点F,则与的大小关系为( )
A. B. C. D.无法确定
3、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
A.3cm B.6cm C.10cm D.12cm
4、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )
A.30° B.40° C.50° D.60°
5、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
A.∠FBA B.∠DBC C.∠CDB D.∠BDG
6、当三角形中一个内角是另一个内角的2倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为60°,那么这个“特征三角形”的最大内角的度数是( )
A.80° B.90° C.100° D.120°
7、以下列各组线段为边,能组成三角形的是( )
A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
8、如图,于点,于点,于点,下列关于高的说法错误的是( )
A.在中,是边上的高 B.在中,是边上的高
C.在中,是边上的高 D.在中,是边上的高
9、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )
A.4 B.5 C.8 D.11
10、如图,已知△ABC中,BD、CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠BAC=n°(0<n<180),那么∠BOE的度数是( )
A.90°n° B.90°n° C.45°+n° D.180°﹣n°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在ABC中,已知∠A=60°,∠B=80°,则∠C是_____°.
2、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.
3、如图,AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为24 cm2,则△ABE的面积为________cm2
4、已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|=________.
5、如图,∠ABD=80°,∠C=38°,则∠D=___度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,Rt△ABC中,,D、E分别是AB、AC上的点,且.求证:ED⊥AB
2、如图,中,是角平分线,且,,求的度数.
3、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求
(1)∠CAD的度数;
(2)∠AED的度数.
4、如图1,我们把一副两个三角板如图摆放在一起,其中OA,OD在一条直线上,∠B=45°,∠C=30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角∠AOA'=α(0<α<180°).
(1)在旋转过程中,当α为 度时,A'B'OC,当α为 度时,A'B'⊥CD;
(2)如图2,将图1中的△OAB以点O为旋转中心旋转到△OA'B'的位置,求当α为多少度时,OB'平分∠COD;
拓展应用:
(3)当90°<α<120°时,连接A'D,利用图3探究∠B'A'D+∠B'OC+∠A'DC值的大小变化情况,并说明理由.
5、如图,AD是的高,CE是的角平分线.若,,求的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:根据三角形的三边关系,知
A、1+2<4,不能组成三角形,故不符合题意;
B、4+6>8,能组成三角形,故符合题意;
C、5+6<12,不能够组成三角形,故不符合题意;
D、3+3=6,不能组成三角形,故不符合题意.
故选:B.
【点睛】
此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
2、B
【解析】
【分析】
由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.
【详解】
解:∵AD∥BC,
∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,
∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,
∴∠BAE=∠BAD,∠ABE=∠ABC,∠CDF=∠ADC,∠DCF=∠BCD,
∴∠BAE+∠ABE=(∠BAD+∠ABC)=90°,
∠CDF+∠DCF=(∠ADC+∠BCD) =90°,
∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,
∴∠1=∠2=90°,
故选:B.
【点睛】
本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.
3、C
【解析】
【分析】
设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
【详解】
解:设第三根木棒的长度为cm,则
所以A,B,D不符合题意,C符合题意,
故选C
【点睛】
本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
4、A
【解析】
【分析】
根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
【详解】
∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
∵∠PCM是△BCP的外角,
∴∠P=∠PCM−∠CBP=50°−20°=30°,
故选:A.
【点睛】
本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
5、C
【解析】
【分析】
根据三角形的外角的概念解答即可.
【详解】
解:A.∠FBA是△ABC的外角,故不符合题意;
B. ∠DBC不是任何三角形的外角,故不符合题意;
C.∠CDB是∠ADB的外角,符合题意;
D. ∠BDG不是任何三角形的外角,故不符合题意;
故选:C.
【点睛】
本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
6、B
【解析】
【分析】
根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最大内角即可.
【详解】
解:由题意得:α=2β,α=60°,则β=30°,
180°-60°-30°=90°,
故选B.
【点睛】
此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.
7、A
【解析】
【分析】
三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
【详解】
解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
故选A
【点睛】
本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
8、C
【解析】
【详解】
解:A、在中,是边上的高,该说法正确,故本选项不符合题意;
B、在中,是边上的高,该说法正确,故本选项不符合题意;
C、在中,不是边上的高,该说法错误,故本选项符合题意;
D、在中,是边上的高,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形高的定义,熟练掌握在三角形中,从一个顶点向它的对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高是解题的关键.
9、C
【解析】
【分析】
直接利用三角形三边关系得出第三边的取值范围,进而得出答案.
【详解】
解:∵一个三角形的两边长分别为3和8,
∴5<第三边长<11,
则第三边长可能是:8.
故选:C.
【点睛】
此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.
10、A
【解析】
【分析】
根据BD、CE分别是△ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解.
【详解】
解:∵BD、CE分别是△ABC的角平分线,
∴,,
∴
,
∵,
∴.
故答案选:A.
【点睛】
本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于.三角形的一个外角等于与它不相邻的两个内角之和.
二、填空题
1、40
【解析】
【分析】
根据三角形内角和定理计算即可.
【详解】
解:∵∠A=60°,∠B=80°,
∴∠C=180°﹣60°﹣80°=40°,
故答案为:40.
【点睛】
本题考查三角形内角和定理,三角形内角和是180°.
2、120
【解析】
【分析】
根据三角形的外角性质,可得 ,即可求解.
【详解】
解:∵ 是 的外角,
∴ ,
∵∠A=50°,∠B=70°,
∴ .
故答案为:120
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
3、6
【解析】
【分析】
中线将三角形分成两个面积相等的三角形,可知,计算求解即可.
【详解】
解:由题意知
∴
∵
∴
故答案为:6.
【点睛】
本题考查了三角形的中线.解题的关键在于理解中线将三角形分成两个面积相等的三角形.
4、
【解析】
【分析】
首先利用三角形的三边关系得出,然后根据求绝对值的法则进行化简即可.
【详解】
解:∵是的三条边,
∴,
∴=.
故答案为:.
【点睛】
熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.
|a+b-c|+|b-a-c|
5、
三、解答题
1、见解析
【解析】
【分析】
根据三角形内角和定理可得,从而可得结论.
【详解】
解:在中,,
在中,
∵
∴
∴ED⊥AB
【点睛】
本题主要考查了垂直的判定,证明是解答本题的关键.
2、25°
【解析】
【分析】
根据三角形内角和求出∠CAB,再根据角平分线的性质求出∠BAE即可.
【详解】
解:∵∠B=52°,∠C=78°,
∴∠BAC=180°-52°-78°=50°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=×50°=25°.
【点睛】
本题考查了角的平分线的性质、三角形的内角和定理,熟记三角形内角和为180°是解本题的关键.
3、 (1)34°
(2)41°
【解析】
【分析】
(1)根据三角形内角和可得的度数;
(2)先根据三角形外角性质计算出,再根据角平分线定义得到,接着再利用三角形外角性质得到.
(1)
解:在中,,,
;
(2)
解:在中,,
,
平分,
,
.
【点睛】
本题考查角形内角和定理,解题的关键是掌握三角形内角和是,合理使用三角形外角性质计算角度.
4、(1)30,90;(2)105°;(3)不变,理由见解析
【解析】
【分析】
(1)根据题意作出图形,根据所给的条件求解即可;
(2)由旋转的性质可得∠AOB=∠A'OB'=45°,由角的数量关系可求解;
(3)由α可分别表示∠B'A'D,∠B'OC,∠A'DC再求和即可.
【详解】
解:(1)当A'B'∥OC时,
∴∠A′OC+∠A′=180°,
∵∠A′=90°,
∴∠A′OC=90°,
∴∠AOA′=180°﹣90°﹣60°=30°,即α=30°;
当A'B'⊥CD时,
则OA′∥CD,
∴∠AOA′=∠ODC=90°,即α=90°;
故答案为:30;90.
(2)∵△OAB以O为中心顺时针旋转得到△OA′B′,
∴∠AOB=∠A'OB'=45°,
∵∠COD=60°,OB′平分∠COD,
∴∠DOB'=30°,
∴∠AOA'=180°﹣∠DOB′﹣∠A'OB′=180°﹣30°﹣45°=105°,
即当α为105°时,OB'平分∠COD;
(3)不变,理由如下:
∵∠AOA′=α,
∴∠B′OD=180°﹣45°﹣α=135°﹣α,
∴∠B′OC=60°﹣(135°﹣α)=α﹣75°,
设∠A′DC=β,
∴∠A′DO=90°﹣β,
∴∠B′OD+∠A′DO=∠B'A'D+∠B′,即135°﹣α+90°﹣β=∠B'A'D+45°,
解得∠B'A'D=180°﹣α﹣β,
∴∠B'A'D+∠B'OC+∠A'DC=180°﹣α﹣β+α﹣75°+β=105°.
【点睛】
本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键.
5、
【解析】
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
数学七年级下册第九章 三角形综合与测试练习: 这是一份数学七年级下册第九章 三角形综合与测试练习,共24页。
冀教版七年级下册第九章 三角形综合与测试课后复习题: 这是一份冀教版七年级下册第九章 三角形综合与测试课后复习题,共24页。
2020-2021学年第九章 三角形综合与测试课后复习题: 这是一份2020-2021学年第九章 三角形综合与测试课后复习题,共22页。试卷主要包含了如图,在ABC中,点D等内容,欢迎下载使用。