初中数学冀教版七年级下册第九章 三角形综合与测试当堂检测题
展开冀教版七年级数学下册第九章 三角形专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
2、将一副三角板按不同位置摆放,下图中与互余的是( )
A. B.
C. D.
3、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A. B. C. D.
4、数学课上,同学们在作中AC边上的高时,共画出下列四种图形,其中正确的是( ).
A. B.C. D.
5、下列长度的三条线段能组成三角形的是( )
A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
6、以下长度的线段能和长度为2,6的线段组成三角形的是( )
A.2 B.4 C.6 D.9
7、如图,把△ABC绕顶点C按顺时针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为( )
A.30° B.35° C.40° D.45°
8、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )
A.2 B.10 C.12 D.13
9、如图,,,则的度数是( )
A.55° B.35° C.45° D.25°
10、人字梯中间一般会设计一“拉杆”,这样做的道理是( )
A.两点之间线段最短 B.三角形的稳定性
C.两点确定一条直线 D.垂线段最短
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在中,若,则_______.
2、在△ABC中,若AC=3,BC=7则第三边AB的取值范围为________.
3、如图,△ABC≌△DCB,∠DBC=36°,则∠AOB=_____.
4、中,比大10°,,则______.
5、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.
三、解答题(5小题,每小题10分,共计50分)
1、如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从C岛看A、B岛的视角∠ACB为多少?
2、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB的度数.
3、如图所示,AD,CE是△ABC的两条高,AB=6cm,BC=12cm,CE=9cm.
(1)求△ABC的面积;
(2)求AD的长.
4、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.
5、已知直线AB∥CD,EF是截线,点M在直线AB、CD之间.
(1)如图1,连接GM,HM.求证:;
(2)如图2,在的角平分线上取两点M、Q,使得.请直接写出与之间的数量关系;
(3)如图3,若射线GH平分,点N在MH的延长线上,连接GN,若,,求的度数.
-参考答案-
一、单选题
1、D
【解析】
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
2、A
【解析】
【分析】
根据平角的定义可判断A,D,根据同角的余角相等可判断B,根据三角形的外角的性质可判断C,从而可得答案.
【详解】
解:选项A:根据平角的定义得:∠α+90°+∠β=180°,
∴∠α+∠β=90°, 即∠α与∠β互余;故A符合题意;
选项B:如图,
故B不符合题意;
选项C:如图,
故C不符合题意;
选项D:
故D不符合题意;
故选A
【点睛】
本题考查的是平角的定义,互余的含义,同角的余角相等,三角形的外角的性质,掌握“与直角三角形有关的角度的计算”是解本题的关键.
3、B
【解析】
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
4、A
【解析】
【分析】
满足两个条件:①经过点B;②垂直AC,由此即可判断.
【详解】
解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,
故选:A.
【点睛】
本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
5、C
【解析】
【分析】
根据组成三角形的三边关系依次判断即可.
【详解】
A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
故选:C.
【点睛】
本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
6、C
【解析】
【分析】
根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.
【详解】
解:设第三边的长为,已知长度为2,6的线段,
根据三角形的三边关系可得,,即,根据选项可得
∴
故选C
【点睛】
本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.
7、B
【解析】
【分析】
由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.
【详解】
解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',
∴∠A′CA=90°﹣50°=40°,
∴∠BCB′=∠A′CA=40°,
∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.
故选:B.
【点睛】
本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.
8、B
【解析】
【分析】
根据在三角形中三边关系可求第三边长的范围,再选出答案.
【详解】
解:设第三边长为x,则
由三角形三边关系定理得7-5<x<7+5,即2<x<12.
只有选项B符合题意,
故选:B.
【点睛】
本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.
9、D
【解析】
【分析】
根据三角形的内角和定理和对顶角相等求解即可.
【详解】
解:设AD与BC相交于O,则∠COD=∠AOB,
∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,
∴∠D=∠B=25°,
故选:D.
【点睛】
本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.
10、B
【解析】
【分析】
首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.
【详解】
人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.
故选:B.
【点睛】
本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.
二、填空题
1、65°##65度
【解析】
【分析】
由三角形的内角和定理,得到,即可得到答案;
【详解】
解:在中,,
∵,
∴,
∴;
故答案为:65°.
【点睛】
本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.
2、4<AB<10
【解析】
【分析】
根据三角形的三边关系,直接求解即可.
【详解】
解:∵在△ABC中,AC=3,BC=7,
,
即,
解得.
故答案为:.
【点睛】
本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.
3、72°##72度
【解析】
【分析】
由全等三角形的对应角相等和三角形外角定理求解.
【详解】
解:如图
△ABC≌△DCB,∠DBC=36°,
∠ACB=∠DBC=36°,
∠AOB=∠ACB+∠DBC=36°+36°=72°
故答案为:72°.
【点睛】
本题考查全等三角形对应角相等、三角形的一个外角等于与它不相邻的两个内角和,掌握相关知识是解题关键.
4、70°
【解析】
【分析】
根据三角形内角和定理可得,由题意比大,可得,组成方程组求解即可.
【详解】
解:∵,
∴,
∵比大,
∴,
∴,
解得:,
故答案为:.
【点睛】
题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键.
5、120
【解析】
【分析】
根据三角形的外角性质,可得 ,即可求解.
【详解】
解:∵ 是 的外角,
∴ ,
∵∠A=50°,∠B=70°,
∴ .
故答案为:120
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
三、解答题
1、90°
【解析】
【分析】
根据题意在图中标注方向角,得到有关角的度数,根据三角形内角和定理和平行线的性质解答即可.
【详解】
解:由题意得,∠DAB=80°,
∵DA∥EB,
∴∠EBA=180°﹣∠DAB=100°,又∠EBC=40°,
∴∠ABC=∠EBA﹣∠EBC=60°,
∵∠DAB=80°,∠DAC=50°,
∴∠CAB=30°,
∴∠ACB=180°﹣∠CAB﹣∠ABC=90°.
【点睛】
本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.
2、75°
【解析】
【分析】
根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.
【详解】
解:∵AD是∠BAC的平分线,∠BAC=80°,
∴∠DAC=40°,
∵CE是△ADC边AD上的高,
∴∠ACE=90°﹣40°=50°,
∵∠ECD=25°
∴∠ACB=50°+25°=75°.
【点睛】
本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.
3、(1)27;(2)4.5
【解析】
【分析】
(1)根据三角形面积公式进行求解即可;
(2)利用面积法进行求解即可.
【详解】
解:(1)由题意得:.
(2)∵,
∴.
解得.
【点睛】
本题主要考查了与三角形高有关的面积求解,解题的关键在于能够熟练掌握三角形面积公式.
4、见解析
【解析】
【分析】
根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.
【详解】
证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,
∴∠B=∠ACB,
又∵BC平分∠ACD,
∴∠ACB=∠DCB,
∴∠B=∠DCB,
∴AB∥CD(内错角相等,两直线平行).
【点睛】
本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.
5、 (1)见解析
(2)∠GQH+∠GMH=180°,理由见解析
(3)60°
【解析】
【分析】
(1)过点M作MI∥AB交EF于点I,可得∠AGM=∠GMI,再由AB∥CD,可得MI∥CD,从而得到∠CHM=∠HMI,即可求证;
(2)过点M作MP∥AB交EF于点P,同(1)可得到∠PMH=∠CHM,∠GMP=∠AGM,再由MH平分∠GHC,可得∠PHM=∠CHM,从而得到∠PHM=∠PMH,再由,可得∠HGQ=∠GMP,从而得到∠GMH=∠HGQ+∠PHM,然后根据三角形的内角和定理,即可求解;
(3)过点M作MK∥AB交EF于点K,设 ,可得 ,同(1),可得∠GMH=∠GMK+HMK= ,再由,可得,然后根据三角形的内角和定理,可得 ,再由AB∥CD,可得∠AGH+∠CHG=180°,即可求解.
(1)
证明:如图,过点M作MI∥AB交EF于点I,
∵MI∥AB,
∴∠AGM=∠GMI,
∵AB∥CD,
∴MI∥CD,
∴∠CHM=∠HMI,
∴∠GMH=∠HMI +∠GMI= ∠AGM +∠CHM;
(2)
解:∠GQH+∠GMH=180°,理由如下:
如图,过点M作MP∥AB交EF于点P,
∵MP∥AB,
∴∠GMP=∠AGM,
∵AB∥CD,
∴MP∥CD,
∴∠PMH=∠CHM,
∵MH平分∠GHC,
∴∠PHM=∠CHM,
∴∠PHM=∠PMH,
∵,
∴∠HGQ=∠GMP,
∵∠GMH=∠GMP+∠PMH,
∴∠GMH=∠HGQ+∠PHM,
∵∠GQH+∠HGQ+∠PHM=180°,
∴∠GQH+∠GMH=180°
(3)
解:如图,过点M作MK∥AB交EF于点K,
设 ,
∵GH平分∠BGM,
∴ ,
∵MK∥AB,
∴ ,
∵AB∥CD,
∴MK∥CD,
∴∠HMK=∠CHM,
∴∠GMH=∠GMK+HMK= ,
∵,
∴,即,
∵∠GMH+∠N+∠MGN=180°,
∴ ,
解得: ,
∵AB∥CD,
∴∠AGH+∠CHG=180°,
即 ,
∴ ,
∴∠MHG=60°.
【点睛】
本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.
初中数学冀教版七年级下册第九章 三角形综合与测试课后测评: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后测评,共23页。
初中数学冀教版七年级下册第九章 三角形综合与测试课后复习题: 这是一份初中数学冀教版七年级下册第九章 三角形综合与测试课后复习题,共22页。试卷主要包含了如图,在中,,,则外角的度数是,如图,,,,则的度数是等内容,欢迎下载使用。
2021学年第九章 三角形综合与测试课后作业题: 这是一份2021学年第九章 三角形综合与测试课后作业题,共25页。试卷主要包含了如图,直线l1等内容,欢迎下载使用。